Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 196: 115551, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37769403

RESUMO

Documented ingestion of microplastics and other anthropogenic microparticles (AMP) by marine fishes has increased over the last decade. However, baseline datasets on AMP ingestion in Arctic fish species are limited. This study documents AMP ingestion in Icelandic capelin (Mallotus villosus) and investigates how this relates to several biological variables. A total of 160 capelin gastrointestinal tracts were sampled and digested using 10 % potassium hydroxide and visual inspection protocols. A total frequency of occurrence (%FO) of 52.5 % and a mean AMP abundance of 1.33 ± 2.37 per individual was found (particles > 45 µm). The colour of AMP detected was significantly different between sampling locations. However, no differences in %FO or mean AMP abundance were detected between sampling locations or related to body size, gut fullness, or sex. This research contributes to the growing body of knowledge on AMP ingestion by Arctic marine species.


Assuntos
Plásticos , Poluentes Químicos da Água , Animais , Islândia , Peixes , Microplásticos , Ingestão de Alimentos , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise
2.
J Environ Qual ; 52(5): 1037-1048, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37296527

RESUMO

Application of treated sewage sludge (biosolids) from wastewater treatment plants (WWTPs) to farmlands is an important pathway through which microplastic particles (MPs) enter terrestrial ecosystems. Yet, microplastic concentrations in Canadian biosolids have only been estimated in samples from four WWTPs previously. We aimed to fill this knowledge gap by quantifying microplastics in biosolids from 22 WWTPs located in nine provinces and two commercial fertilizer producers in Canada. All samples had substantial microplastic concentrations ranging from 228 to 1353 particles per gram dry weight (median = 636 particles), which are orders of magnitude greater than MPs reported from earlier investigations of biosolids from other countries. Fibers (median: 86%) were the most common type of MPs observed, followed by fragments (median: 13%). There were no statistically significant differences in the amount of microplastics observed in the biosolids from different geographical regions, WWTP types, and sludge treatment processes. This suggests that diverse combinations of local sewershed characteristics, site-specific treatment approaches, and daily flow at WWTPs may be influencing concentrations of microplastics in biosolids. Our results indicate that microplastic concentrations in biosolids are substantially higher than they are in other environmental matrices, and this has important implications to managing microplastic pollution in terrestrial ecosystems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Esgotos , Plásticos , Eliminação de Resíduos Líquidos , Biossólidos , Ecossistema , Canadá , Poluentes Químicos da Água/análise , Monitoramento Ambiental
3.
Environ Monit Assess ; 195(6): 645, 2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37150787

RESUMO

River water was sampled at 105 locations in the Ottawa River watershed and analysed for microplastics. Sampling techniques were standardised and replicated at each sample location to give an indication of the spatial extent of microplastics at the watershed scale. Microplastic concentrations remained largely uniform, with no clear accumulation of microplastics towards the lower reaches of the watershed. An ANCOVA analysis determined that the only significant relationships to microplastic concentration were distance downstream on the main channel and tributaries and an increase of microplastic concentrations at boat launch locations. However, these relationships were not strong (R2 value of 0.15) and suggest a more complex interaction of microplastics in large watersheds. It is recommended that further research on microplastic pollution in rivers needs to also focus on temporal factors in addition to considering sinks as an important element in the distribution of microplastics at the watershed scale.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Rios
4.
Mar Pollut Bull ; 188: 114692, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36753811

RESUMO

Ringed seals (Pusa hispida) play a crucial role in Arctic food webs as important pelagic predators and represent an essential component of Inuvialuit culture and food security. Plastic pollution is recognized as a global threat of concern, and Arctic regions may act as sinks for anthropogenic debris. To date, mixed evidence exists concerning the propensity for Canadian Arctic marine mammals to ingest and retain plastic. Our study builds on existing literature by offering the first assessment of plastic ingestion in ringed seals harvested in the western Canadian Arctic. We detected no evidence of microplastic (particles ≥80 µm) retention in the stomachs of ten ringed seals from the Inuvialuit Settlement Region (ISR) in the Northwest Territories, Canada. These results are consistent with previous studies that have found that some marine mammals do not accumulate microplastics in evaluated regions.


Assuntos
Caniformia , Focas Verdadeiras , Animais , Canadá , Microplásticos , Plásticos , Cetáceos , Regiões Árticas
5.
PLoS One ; 17(12): e0279412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36542618

RESUMO

Legacy arsenic (As) contamination from past mining operations remains an environmental concern in lakes of the Yellowknife area (Northwest Territories, Canada) due to its post-depositional mobility in sediment and potential for continued remobilization to surface waters. Warmer temperatures associated with climate change in this subarctic region may impact As internal loading from lake sediments either by a direct effect on sediment porewater diffusion rate or indirect effects on microbial metabolism and sediment redox conditions. This study assessed the influence of warmer temperatures on As diffusion from contaminated sediment of two lakes with contrasting sediment characteristics using an experimental incubation approach. Sediments from Yellowknife Bay (on Great Slave Lake) contained predominately clay and silt with low organic matter (10%) and high As content (1675 µg/g) while sediments of Lower Martin Lake had high organic matter content (~70%) and approximately half the As (822 µg/g). Duplicate sediment batches from each lake were incubated in a temperature-controlled chamber, and overlying water was kept well-oxygenated while As flux from sediment was measured during four weekly temperature treatments (7°C to 21°C, at ~5°C intervals). During the experiment, As diffused from sediment to overlying water in all cores and temperature treatments, with As fluxes ranging from 48-956 µg/m2/day. Arsenic fluxes were greater from Yellowknife Bay sediments, which had higher solid-phase As concentrations, compared to those of Lower Martin Lake. Short-term warming did not stimulate As flux from duplicate cores of either sediment type, in contrast with reported temperature enhancement in other published studies. We conclude that warmer temperatures were insufficient to strongly enhance sediment As diffusion into overlying oxic waters. These observations are relevant for evaluating climate-warming effects on sediment As mobility in subarctic lakes with little or no thermal stratification and a well-oxygenated water column.


Assuntos
Arsênio , Poluentes Químicos da Água , Arsênio/análise , Lagos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Sedimentos Geológicos , Água
6.
Water Environ Res ; 94(6): e10747, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35686312

RESUMO

Hypoxia in surface waters driven by warming climate and other anthropogenic stressors is a major conservation concern, and technological solutions for water quality remediation are sorely needed. One potential solution involves the use of low-intensity electromagnetic fields (EMFs) to increase dissolved oxygen levels, but potential collateral effects of the EMFs on aquatic animals have not been formally evaluated. We examined the effects of EMF exposure on wild-caught, captive sunfish (Lepomis spp.) over 8-day and 3-day exposures, with and without aeration in mesocosms and stock tanks (respectively). We also quantified ambient fish abundance in close proximity to EMF devices deployed in Opinicon Lake (ON). We found no significant differences in a suite of blood-based stress physiology biomarkers, behaviors, and putative aerobic capacities between EMF and control conditions over 8 days. Aerated mesocosms equipped with activated EMFs consistently had higher oxygen levels in the water than aerated controls. There were no differences in mortality during 3-day oxygen depletion trials under EMF or control conditions, and we detected no differences in fish abundance when the devices were activated in the lake. Our findings suggest that deploying EMF devices in field settings is not likely to exert negative effects on exposed fish populations. PRACTITIONER POINTS: Low-cost, low-energy technological solutions to remediate aquatic hypoxia are sorely needed Electromagnetic fields (EMFs) can increase oxygen flux across air/water interfaces and increase dissolved oxygen levels We found no evidence of negative effects of EMFs on fish physiology or behavior and our results support their use in alleviating hypoxic conditions.


Assuntos
Campos Eletromagnéticos , Oxigênio , Animais , Peixes , Água Doce , Hipóxia
7.
Sci Total Environ ; 824: 153738, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35151741

RESUMO

We evaluated how two large wildfires affected the sedimentation rate and accumulation of lead (Pb), mercury (Hg), and cadmium (Cd) in sediment of four subarctic montane lakes in the Yukon, Canada. The wildfires occurred 60 and 20 years (1958, 1998) before sediment collection in 2018. Site-specific fire exposure was inferred from the charcoal accumulation histories in the lake sediments and the burned catchment area was determined from historical fire maps. The two major wildfires caused a two to five-fold increase in sedimentation rates and a two to eight-fold increase in sediment metal accumulation rates in Little Fox Lake. The mass accumulation rates of metals in Little Fox Lake sediment increased by a maximum of 2.7-4.7 mg Pb m-2 yr-1, 19-29 µg Hg m-2 yr-1 and 37-114 µg Cd m-2 yr-1 following wildfires. Modelling using elemental ratios of lithogenic sources suggested a large proportion of the Pb and Hg accumulating in post-fire sediment was from remobilized legacy anthropogenic pollution. In contrast, Cd fluxes were consistent with variation in catchment weathering. Impacts of wildfires were visible but more muted in the sediment of Little Braeburn Lake, whereas Fox Lake and Grayling Lake sediments showed little to no wildfire impact and served as a reference for external (long-range) metal deposition. Major changes to lake sediment geochemistry in Little Fox Lake were caused by the lack of vegetation and soil recovery in the catchment following the severe 1998 fire. Wildfire impacts were persistent in the lake more than 20 years after the last fire, with no sign of a return to pre-fire Pb, Hg, and Cd accumulation rates. This study shows that wildfires in northern montane catchments can significantly increase the rate of metal accumulation in affected lakes, thereby impeding recovery from reductions in anthropogenic air emissions of these metals.


Assuntos
Mercúrio , Poluentes Químicos da Água , Incêndios Florestais , Cádmio , Monitoramento Ambiental , Sedimentos Geológicos , Lagos , Chumbo , Mercúrio/análise , Poluentes Químicos da Água/análise
8.
Sci Total Environ ; 773: 145536, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33940730

RESUMO

Plastic pollution is a contaminant of global concern, as it is present even in remote ecosystems - like the Arctic. Arctic seabirds are vulnerable to ingesting plastic pollution, and these ingested particles are shed in the form of microplastics via guano. This suggests that Arctic seabird guano may act as a vector for the movement of microplastics into and around northern ecosystems. While contaminant-laden guano deposition patterns create a clear concentration gradient of chemicals around seabird colonies, this has not yet been investigated with plastic pollution. Here we tested whether a contaminant gradient of plastic pollution exists around a seabird colony that is primarily comprised of northern fulmars (Fulmarus glacialis) in the Canadian Arctic. Atmospheric deposition, surface water, and surface sediment samples were collected below the cliff-side of the colony and at increasing intervals of 1 km from the colony. Fulmars were also collected when foraging away from their colony. Microplastics and other anthropogenic microparticles were identified in all three environmental matrices as well as fulmar guano. Fibers were the most common shape in fulmar guano, atmospheric deposition and surface sediment, and fragments were the most common shape in surface water. We did not find a gradient of microplastic concentrations in environmental matrices related to distance from the colony. Combined, these results suggest that fulmars are not the primary source of microplastic around this colony. Further research is warranted to understand sources of microplastics to the areas around the colonies, including to what extent seabirds transport and concentrate microplastics in Arctic ecosystems, and whether concentrations proximate to large colonies may be species dependent.


Assuntos
Microplásticos , Plásticos , Animais , Regiões Árticas , Aves , Canadá , Ecossistema , Monitoramento Ambiental
9.
Sci Total Environ ; 764: 142808, 2021 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33082039

RESUMO

The presence and persistence of microplastics in the environment is increasingly recognized, however, how they are distributed throughout environmental systems requires further understanding. Seabirds have been identified as vectors of chemical contaminants from marine to terrestrial environments, and studies have recently identified seabirds as possible vectors of plastic pollution in the marine environment. However, their role in the distribution of microplastic pollution in the Arctic has yet to be explored. We examined two species of seabirds known to ingest plastics: northern fulmars (Fulmarus glacialis; n = 27) and thick-billed murres (Uria lomvia; n = 30) as potential vectors for the transport of microplastics in and around breeding colonies. Our results indicated anthropogenic particles in the faecal precursors of both species. Twenty-four anthropogenic particles were found in the fulmar faecal precursor samples (M = 0.89, SD = 1.09; 23 fibres and one fragment), and 10 anthropogenic particles were found in the murre faecal precursor samples (M = 0.33, SD = 0.92; 5 fibres, 4 fragments, and one foam). Through the use of bird population surveys and the quantification of anthropogenic particles found in the faecal precursors of sampled seabirds from the same colony, we estimate that fulmars and murres may deposit between 3.3 (CIboot 1.9 × 106-4.9 × 106) and 45.5 (CIboot 9.1 × 106-91.9 × 106) million anthropogenic particles, respectively, per year into the environment during their breeding period at these colonies. These estimates indicate that migratory seabirds could be contributing to the distribution and local hotspots of microplastics in Arctic environments, however, they are still likely a relatively small source of plastic pollution in terms of mass in the environment and may not contribute as much as other reported sources such as atmospheric deposition in the Arctic.


Assuntos
Microplásticos , Plásticos , Animais , Regiões Árticas , Aves , Canadá , Monitoramento Ambiental
10.
Environ Pollut ; 259: 113888, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32023786

RESUMO

The contributions of contaminant sources are difficult to resolve in the sediment record using concentration gradients and flux reconstruction alone. In this study, we demonstrate that source partitioning using lead isotopes provide complementary and unique information to concentration gradients to evaluate point-source releases, transport, and recovery of metal mining pollution in the environment. We analyzed eight sediment cores, collected within 24 km of two gold mines, for Pb stable isotopes, Pb concentration, and sediment chronology. Stable Pb isotope ratios (206Pb/207Pb, 208Pb/204Pb) of mining ore were different from those of background (pre-disturbance) sediment, allowing the use of a quantitative mixing model. As previously reported for some Arctic lakes, Pb isotope ratios indicated negligible aerosol inputs to sediment from regional or long-range pollution sources, possibly related to low annual precipitation. Maximum recorded Pb flux at each site reached up to 63 mg m-2 yr-1 in the period corresponding to early years of mining when pollution mitigation measures were at a minimum (1950s-1960s). The maximum contribution of mining-derived Pb to these fluxes declined with distance from the mines from 92 ± 8% to 8 ± 4% at the farthest site. Mining-derived Pb was still present at the sediment surface within 9 km of Giant Mine more than ten years after mine closure (5-26 km, 95% confidence interval) and model estimates suggest it could be present for another ∼50-100 years. These results highlight the persistence of Pb pollution in freshwater sediment and the usefulness of Pb stable isotopes to quantify spatial and temporal trends of contamination from mining pollution, particularly as concentrations approach background.


Assuntos
Baías , Monitoramento Ambiental , Sedimentos Geológicos , Isótopos , Chumbo , Mineração , Regiões Árticas , Baías/química , Poluentes Ambientais/análise , Sedimentos Geológicos/química , Ouro , Isótopos/análise , Chumbo/análise , Territórios do Noroeste
11.
Sci Total Environ ; 709: 136212, 2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-31905559

RESUMO

Silver mining in the early-1900s has left a legacy of arsenic-rich mine tailings around the town of Cobalt, in northeastern Ontario, Canada. Due to a lack of environmental control and regulations at that time, it was common for mines to dispose of their waste into adjacent lakes and land depressions, concentrating metals and metalloids in sensitive aquatic ecosystems. In order to examine what impacts, if any, these century-old, arsenic-rich mine tailings are having on present-day aquatic ecosystems, we sampled diatom assemblages in lake surface sediment in 24 lakes along a gradient of surface water arsenic contamination (0.4-972 µg/L). In addition, we examined sedimentary Cladocera and chironomid abundances and community composition, as well as open-water zooplankton communities and chlorophyll-a concentrations in10 of these study lakes along a gradient of arsenic contamination (0.9-1113 µg/L). Our results show that present-day arsenic concentration is not a significant driver of biotic community composition of the organisms we studied, but instead, that other variables such as lake depth and pH were more important in structuring assemblages. These results suggest that, while legacy contamination has greatly increased metal concentration beyond historical conditions, variability in lake-specific controls among the study lakes appear to be more important in the structuring of diatom, Cladocera, chironomidae, and zooplankton in these lakes.


Assuntos
Lagos/química , Arsênio , Cobalto , Ecossistema , Monitoramento Ambiental , Ontário , Poluentes Químicos da Água
12.
Mar Pollut Bull ; 150: 110772, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31787340

RESUMO

Through collaboration with Inuit hunters, we examined the stomach contents of 142 seals (ringed seals [Phoca hispida; n = 135], bearded seals [Erignathus barbatus; n = 6], and one harbour seal [Phoca vitualina; n = 1]) hunted between 2007 and 2019 from communities around Nunavut to assess whether seals in the eastern Canadian Arctic ingest and retain plastics in their stomachs. The seals in this study ranged from juveniles to adults of up to 30 years of age, and 55% of the seals were males. We found no evidence of plastic ingestion in any of the seals suggesting that seals in Nunavut are not accumulating plastics (>425 µm) in their stomachs. These data provide important baseline information for future plastic pollution monitoring programs in the Arctic.


Assuntos
Monitoramento Ambiental , Conteúdo Gastrointestinal/química , Phoca , Plásticos/análise , Focas Verdadeiras , Poluentes da Água/análise , Animais , Regiões Árticas , Canadá , Estômago
13.
Environ Monit Assess ; 191(3): 172, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783766

RESUMO

A citizen science microplastic monitoring method was developed to engage the public and quantify microplastic contamination at various sites along an approximately 550 km length of the Ottawa River from Lake Temiskaming to Hawkesbury, Ontario, Canada. The volunteers filtered 100 L of river water through a 100-µm mesh at their desired location along the Ottawa River. All but one of the river samples (n = 43) contained microplastics, with the vast majority of microplastics identified as microfibers. Microplastic concentrations ranged from 0.02 to 0.41 microplastic pieces per litre. We noted numerous advantages in working with citizen scientists including actively engaging citizens in the research, ease of recruiting volunteers within the established Ottawa Riverkeeper network, and expanded spatial coverage at minimal additional costs. Despite these important advantages, there are some important considerations with citizen scientist sampling including the rare events where volunteers mislabelled sample sheets (e.g. labelling as control instead of river sample) and the relatively low volume of water (100 L) that the volunteers could easily sample using our methodology. Recommendations for future citizen science projects for freshwater microplastic research include utilising an established and engaged network, running both field and lab control samples (blanks) to obtain estimates of contamination with microplastic fibres, and increasing the amount of water filtered to obtain more reliable estimates of microplastic pollution in our freshwater ecosystems.


Assuntos
Conservação dos Recursos Hídricos/métodos , Monitoramento Ambiental/métodos , Plásticos/análise , Rios/química , Voluntários , Poluentes Químicos da Água/análise , Ecossistema , Humanos , Ontário , Desenvolvimento de Programas , Avaliação de Programas e Projetos de Saúde
14.
Biol Rev Camb Philos Soc ; 94(3): 849-873, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30467930

RESUMO

In the 12 years since Dudgeon et al. (2006) reviewed major pressures on freshwater ecosystems, the biodiversity crisis in the world's lakes, reservoirs, rivers, streams and wetlands has deepened. While lakes, reservoirs and rivers cover only 2.3% of the Earth's surface, these ecosystems host at least 9.5% of the Earth's described animal species. Furthermore, using the World Wide Fund for Nature's Living Planet Index, freshwater population declines (83% between 1970 and 2014) continue to outpace contemporaneous declines in marine or terrestrial systems. The Anthropocene has brought multiple new and varied threats that disproportionately impact freshwater systems. We document 12 emerging threats to freshwater biodiversity that are either entirely new since 2006 or have since intensified: (i) changing climates; (ii) e-commerce and invasions; (iii) infectious diseases; (iv) harmful algal blooms; (v) expanding hydropower; (vi) emerging contaminants; (vii) engineered nanomaterials; (viii) microplastic pollution; (ix) light and noise; (x) freshwater salinisation; (xi) declining calcium; and (xii) cumulative stressors. Effects are evidenced for amphibians, fishes, invertebrates, microbes, plants, turtles and waterbirds, with potential for ecosystem-level changes through bottom-up and top-down processes. In our highly uncertain future, the net effects of these threats raise serious concerns for freshwater ecosystems. However, we also highlight opportunities for conservation gains as a result of novel management tools (e.g. environmental flows, environmental DNA) and specific conservation-oriented actions (e.g. dam removal, habitat protection policies, managed relocation of species) that have been met with varying levels of success. Moving forward, we advocate hybrid approaches that manage fresh waters as crucial ecosystems for human life support as well as essential hotspots of biodiversity and ecological function. Efforts to reverse global trends in freshwater degradation now depend on bridging an immense gap between the aspirations of conservation biologists and the accelerating rate of species endangerment.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Água Doce , Animais , Mudança Climática , Humanos , Fatores de Risco
15.
PLoS One ; 13(6): e0199872, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29953559

RESUMO

We examined late Holocene (ca. 3300 yr BP to present-day) climate variability in the central Northwest Territories (Canadian Subarctic) using a diatom and sedimentological record from Danny's Lake (63.48ºN, 112.54ºW), located 40 km southwest of the modern-day treeline. High-resolution sampling paired with a robust age model (25 radiocarbon dates) allowed for the examination of both lake hydroecological conditions (30-year intervals; diatoms) and sedimentological changes in the watershed (12-year intervals; grain size records) over the late Holocene. Time series analysis of key lake ecological indicators (diatom species Aulacoseira alpigena, Pseudostaurosira brevistriata and Achnanthidium minutissimum) and sedimentological parameters, reflective of catchment processes (coarse silt fraction), suggests significant intermittent variations in turbidity, pH and light penetration within the lake basin. In the diatom record, we observed discontinuous periodicities in the range of ca. 69, 88-100, 115-132, 141-188, 562, 750 and 900 years (>90% and >95% confidence intervals), whereas the coarse silt fraction was characterized by periodicities in the >901 and <61-year range (>95% confidence interval). Periodicities in the proxy data from the Danny's Lake sediment core align with changes in total solar irradiance over the past ca. 3300 yr BP and we hypothesize a link to the Suess Cycle, Gleissberg Cycle and Pacific Decadal Oscillation via occasional inland propagation of shifting air masses over the Pacific Ocean. This research represents an important baseline study of the underlying causes of climate variability in the Canadian Subarctic and provides details on the long-term climate variability that has persisted in this region through the past three thousand years.


Assuntos
Mudança Climática , Diatomáceas , Fósseis , Lagos , Canadá
16.
J Phycol ; 47(6): 1230-40, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27020346

RESUMO

Submerged macrophytes are a central component of lake ecosystems; however, little is known regarding their long-term response to environmental change. We have examined the potential of diatoms as indicators of past macrophyte biomass. We first sampled periphyton to determine whether habitat was a predictor of diatom assemblage. We then sampled 41 lakes in Quebec, Canada, to evaluate whether whole-lake submerged macrophyte biomass (BiomEpiV) influenced surface sediment diatom assemblages. A multivariate regression tree (MRT) was used to construct a semiquantitative model to reconstruct past macrophyte biomass. We determined that periphytic diatom assemblages on macrophytes were significantly different from those on wood and rocks (ANOSIM R = 0.63, P < 0.01). A redundancy analysis (RDA) of the 41-lake data set identified BiomEpiV as a significant (P < 0.05) variable in structuring sedimentary diatom assemblages. The MRT analysis classified the lakes into three groups. These groups were (A) high-macrophyte, nutrient-limited lakes (BiomEpiV ≥525 µg · L(-1) ; total phosphorus [TP] <35 µg · L(-1) ; 23 lakes); (B) low-macrophyte, nutrient-limited lakes (BiomEpiV <525 µg · L(-1) ; TP <35 µg · L(-1) ; 12 lakes); and (C) eutrophic lakes (TP ≥35 µg · L(-1) ; six lakes). A semiquantitative model correctly predicted the MRT group of the lake 71% of the time (P < 0.001). These results suggest that submerged macrophytes have a significant influence on diatom community structure and that sedimentary diatom assemblages can be used to infer past macrophyte abundance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA