Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
1.
bioRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562770

RESUMO

The 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion disorder. Why the incidence of 22q11.2DS is much greater than that of other genomic disorders remains unknown. Short read sequencing cannot resolve the complex segmental duplicon structure to provide direct confirmation of the hypothesis that the rearrangements are caused by non-allelic homologous recombination between the low copy repeats on chromosome 22 (LCR22s). To enable haplotype-specific assembly and rearrangement mapping in LCR22 regions, we combined fiber-FISH optical mapping with whole genome (ultra-)long read sequencing or rearrangement-specific long-range PCR on 24 duos (22q11.2DS patient and parent-of-origin) comprising several different LCR22-mediated rearrangements. Unexpectedly, we demonstrate that not only different paralogous segmental duplicon but also palindromic AT-rich repeats (PATRR) are driving 22q11.2 rearrangements. In addition, we show the existence of two different inversion polymorphisms preceding rearrangement, and somatic mosaicism. The existence of different recombination sites and mechanisms in paralogues and PATRRs which are copy number expanding in the human population are a likely explanation for the high 22q11.2DS incidence.

2.
JCO Oncol Pract ; : OP2300594, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608208

RESUMO

In this article, we defined comprehensive recommendations for the clinical follow-up of pregnant women with a malignancy-suspicious NIPT result, on the basis of the vast experience with population-based NIPT screening programs in two European countries complemented with published large data sets. These recommendations provide a tool for classifying NIPT results as malignancy-suspicious, and guide health care professionals in structured clinical decision making for the diagnostic process of pregnant women who receive such a malignancy-suspicious NIPT result.

3.
Am J Obstet Gynecol ; 230(3): 368.e1-368.e12, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37717890

RESUMO

BACKGROUND: The 22q11.2 deletion syndrome is the most common microdeletion syndrome and is frequently associated with congenital heart disease. Prenatal diagnosis of 22q11.2 deletion syndrome is increasingly offered. It is unknown whether there is a clinical benefit to prenatal detection as compared with postnatal diagnosis. OBJECTIVE: This study aimed to determine differences in perinatal and infant outcomes between patients with prenatal and postnatal diagnosis of 22q11.2 deletion syndrome. STUDY DESIGN: This was a retrospective cohort study across multiple international centers (30 sites, 4 continents) from 2006 to 2019. Participants were fetuses, neonates, or infants with a genetic diagnosis of 22q11.2 deletion syndrome by 1 year of age with or without congenital heart disease; those with prenatal diagnosis or suspicion (suggestive ultrasound findings and/or high-risk cell-free fetal DNA screen for 22q11.2 deletion syndrome with postnatal confirmation) were compared with those with postnatal diagnosis. Perinatal management, cardiac and noncardiac morbidity, and mortality by 1 year were assessed. Outcomes were adjusted for presence of critical congenital heart disease, gestational age at birth, and site. RESULTS: A total of 625 fetuses, neonates, or infants with 22q11.2 deletion syndrome (53.4% male) were included: 259 fetuses were prenatally diagnosed (156 [60.2%] were live-born) and 122 neonates were prenatally suspected with postnatal confirmation, whereas 244 infants were postnatally diagnosed. In the live-born cohort (n=522), 1-year mortality was 5.9%, which did not differ between groups but differed by the presence of critical congenital heart disease (hazard ratio, 4.18; 95% confidence interval, 1.56-11.18; P<.001) and gestational age at birth (hazard ratio, 0.78 per week; 95% confidence interval, 0.69-0.89; P<.001). Adjusting for critical congenital heart disease and gestational age at birth, the prenatal cohort was less likely to deliver at a local community hospital (5.1% vs 38.2%; odds ratio, 0.11; 95% confidence interval, 0.06-0.23; P<.001), experience neonatal cardiac decompensation (1.3% vs 5.0%; odds ratio, 0.11; 95% confidence interval, 0.03-0.49; P=.004), or have failure to thrive by 1 year (43.4% vs 50.3%; odds ratio, 0.58; 95% confidence interval, 0.36-0.91; P=.019). CONCLUSION: Prenatal detection of 22q11.2 deletion syndrome was associated with improved delivery management and less cardiac and noncardiac morbidity, but not mortality, compared with postnatal detection.


Assuntos
Síndrome de DiGeorge , Cardiopatias Congênitas , Lactente , Recém-Nascido , Gravidez , Feminino , Humanos , Masculino , Síndrome de DiGeorge/diagnóstico , Síndrome de DiGeorge/genética , Estudos Retrospectivos , Diagnóstico Pré-Natal , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/epidemiologia , Cardiopatias Congênitas/genética , Cuidado Pré-Natal
5.
NPJ Genom Med ; 8(1): 17, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463940

RESUMO

Congenital heart disease (CHD) affecting the conotruncal region of the heart, occurs in 40-50% of patients with 22q11.2 deletion syndrome (22q11.2DS). This syndrome is a rare disorder with relative genetic homogeneity that can facilitate identification of genetic modifiers. Haploinsufficiency of TBX1, encoding a T-box transcription factor, is one of the main genes responsible for the etiology of the syndrome. We suggest that genetic modifiers of conotruncal defects in patients with 22q11.2DS may be in the TBX1 gene network. To identify genetic modifiers, we analyzed rare, predicted damaging variants in whole genome sequence of 456 cases with conotruncal defects and 537 controls, with 22q11.2DS. We then performed gene set approaches and identified chromatin regulatory genes as modifiers. Chromatin genes with recurrent damaging variants include EP400, KAT6A, KMT2C, KMT2D, NSD1, CHD7 and PHF21A. In total, we identified 37 chromatin regulatory genes, that may increase risk for conotruncal heart defects in 8.5% of 22q11.2DS cases. Many of these genes were identified as risk factors for sporadic CHD in the general population. These genes are co-expressed in cardiac progenitor cells with TBX1, suggesting that they may be in the same genetic network. The genes KAT6A, KMT2C, CHD7 and EZH2, have been previously shown to genetically interact with TBX1 in mouse models. Our findings indicate that disturbance of chromatin regulatory genes impact the TBX1 gene network serving as genetic modifiers of 22q11.2DS and sporadic CHD, suggesting that there are some shared mechanisms involving the TBX1 gene network in the etiology of CHD.

6.
Mol Psychiatry ; 28(5): 2071-2080, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36869225

RESUMO

22q11.2 deletion is one of the strongest known genetic risk factors for schizophrenia. Recent whole-genome sequencing of schizophrenia cases and controls with this deletion provided an unprecedented opportunity to identify risk modifying genetic variants and investigate their contribution to the pathogenesis of schizophrenia in 22q11.2 deletion syndrome. Here, we apply a novel analytic framework that integrates gene network and phenotype data to investigate the aggregate effects of rare coding variants and identified modifier genes in this etiologically homogenous cohort (223 schizophrenia cases and 233 controls of European descent). Our analyses revealed significant additive genetic components of rare nonsynonymous variants in 110 modifier genes (adjusted P = 9.4E-04) that overall accounted for 4.6% of the variance in schizophrenia status in this cohort, of which 4.0% was independent of the common polygenic risk for schizophrenia. The modifier genes affected by rare coding variants were enriched with genes involved in synaptic function and developmental disorders. Spatiotemporal transcriptomic analyses identified an enrichment of coexpression between modifier and 22q11.2 genes in cortical brain regions from late infancy to young adulthood. Corresponding gene coexpression modules are enriched with brain-specific protein-protein interactions of SLC25A1, COMT, and PI4KA in the 22q11.2 deletion region. Overall, our study highlights the contribution of rare coding variants to the SCZ risk. They not only complement common variants in disease genetics but also pinpoint brain regions and developmental stages critical to the etiology of syndromic schizophrenia.


Assuntos
Síndrome de DiGeorge , Esquizofrenia , Humanos , Adulto Jovem , Adulto , Esquizofrenia/genética , Síndrome de DiGeorge/genética , Encéfalo , Perfilação da Expressão Gênica , Sequenciamento Completo do Genoma
7.
Nucleic Acids Res ; 50(11): e63, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35212381

RESUMO

Single-cell whole-genome haplotyping allows simultaneous detection of haplotypes associated with monogenic diseases, chromosome copy-numbering and subsequently, has revealed mosaicism in embryos and embryonic stem cells. Methods, such as karyomapping and haplarithmisis, were deployed as a generic and genome-wide approach for preimplantation genetic testing (PGT) and are replacing traditional PGT methods. While current methods primarily rely on single-nucleotide polymorphism (SNP) array, we envision sequencing-based methods to become more accessible and cost-efficient. Here, we developed a novel sequencing-based methodology to haplotype and copy-number profile single cells. Following DNA amplification, genomic size and complexity is reduced through restriction enzyme digestion and DNA is genotyped through sequencing. This single-cell genotyping-by-sequencing (scGBS) is the input for haplarithmisis, an algorithm we previously developed for SNP array-based single-cell haplotyping. We established technical parameters and developed an analysis pipeline enabling accurate concurrent haplotyping and copy-number profiling of single cells. We demonstrate its value in human blastomere and trophectoderm samples as application for PGT for monogenic disorders. Furthermore, we demonstrate the method to work in other species through analyzing blastomeres of bovine embryos. Our scGBS method opens up the path for single-cell haplotyping of any species with diploid genomes and could make its way into the clinic as a PGT application.


Assuntos
Diagnóstico Pré-Implantação , Animais , Bovinos , Aberrações Cromossômicas , Feminino , Testes Genéticos/métodos , Genótipo , Haplótipos , Humanos , Gravidez , Diagnóstico Pré-Implantação/métodos
8.
Am J Hematol ; 97(5): 548-561, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35119131

RESUMO

Acute lymphoblastic leukemia (ALL) is a malignancy that can be subdivided into distinct entities based on clinical, immunophenotypic and genomic features, including mutations, structural variants (SVs), and copy number alterations (CNA). Chromosome banding analysis (CBA) and Fluorescent In-Situ Hybridization (FISH) together with Multiple Ligation-dependent Probe Amplification (MLPA), array and PCR-based methods form the backbone of routine diagnostics. This approach is labor-intensive, time-consuming and costly. New molecular technologies now exist that can detect SVs and CNAs in one test. Here we apply one such technology, optical genome mapping (OGM), to the diagnostic work-up of 41 ALL cases. Compared to our standard testing pathway, OGM identified all recurrent CNAs and SVs as well as additional recurrent SVs and the resulting fusion genes. Based on the genomic profile obtained by OGM, 32 patients could be assigned to one of the major cytogenetic risk groups compared to 23 with the standard approach. The latter identified 24/34 recurrent chromosomal abnormalities, while OGM identified 33/34, misinterpreting only 1 case with low hypodiploidy. The results of MLPA were concordant in 100% of cases. Overall, there was excellent concordance between the results. OGM increased the detection rate and cytogenetic resolution, and abrogated the need for cascade testing, resulting in reduced turnaround times. OGM also provided opportunities for better patient stratification and accurate treatment options. However, for comprehensive cytogenomic testing, OGM still needs to be complemented with CBA or SNP-array to detect ploidy changes and with BCR::ABL1 FISH to assign patients as soon as possible to targeted therapy.


Assuntos
Aberrações Cromossômicas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Mapeamento Cromossômico/métodos , Variações do Número de Cópias de DNA , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fluxo de Trabalho
9.
Genome Biol ; 22(1): 342, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911553

RESUMO

Accurate simulations of structural variation distributions and sequencing data are crucial for the development and benchmarking of new tools. We develop Sim-it, a straightforward tool for the simulation of both structural variation and long-read data. These simulations from Sim-it reveal the strengths and weaknesses for current available structural variation callers and long-read sequencing platforms. With these findings, we develop a new method (combiSV) that can combine the results from structural variation callers into a superior call set with increased recall and precision, which is also observed for the latest structural variation benchmark set developed by the GIAB Consortium.


Assuntos
Benchmarking , Simulação por Computador , Genoma Humano , Análise de Sequência , Genômica , Humanos , Sequenciamento por Nanoporos , Software
10.
Front Genet ; 12: 706641, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34335701

RESUMO

Segmental duplications or low copy repeats (LCRs) constitute duplicated regions interspersed in the human genome, currently neglected in standard analyses due to their extreme complexity. Recent functional studies have indicated the potential of genes within LCRs in synaptogenesis, neuronal migration, and neocortical expansion in the human lineage. One of the regions with the highest proportion of duplicated sequence is the 22q11.2 locus, carrying eight LCRs (LCR22-A until LCR22-H), and rearrangements between them cause the 22q11.2 deletion syndrome. The LCR22-A block was recently reported to be hypervariable in the human population. It remains unknown whether this variability also exists in non-human primates, since research is strongly hampered by the presence of sequence gaps in the human and non-human primate reference genomes. To chart the LCR22 haplotypes and the associated inter- and intra-species variability, we de novo assembled the region in non-human primates by a combination of optical mapping techniques. A minimal and likely ancient haplotype is present in the chimpanzee, bonobo, and rhesus monkey without intra-species variation. In addition, the optical maps identified assembly errors and closed gaps in the orthologous chromosome 22 reference sequences. These findings indicate the LCR22 expansion to be unique to the human population, which might indicate involvement of the region in human evolution and adaptation. Those maps will enable LCR22-specific functional studies and investigate potential associations with the phenotypic variability in the 22q11.2 deletion syndrome.

11.
Prenat Diagn ; 41(5): 554-563, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33524193

RESUMO

Ploidy or genome-wide chromosomal anomalies such as triploidy, diploid/triploid mixoploidy, chimerism, and genome-wide uniparental disomy are the cause of molar pregnancies, embryonic lethality, and developmental disorders. While triploidy and genome-wide uniparental disomy can be ascribed to fertilization or meiotic errors, the mechanisms causing mixoploidy and chimerism remain shrouded in mystery. Different models have been proposed, but all remain hypothetical and controversial, are deduced from the developmental persistent genomic constitutions present in the sample studied and lack direct evidence. New single-cell genomic methodologies, such as single-cell genome-wide haplotyping, provide an extended view of the constitution of normal and abnormal embryos and have further pinpointed the existence of mixoploidy in cleavage-stage embryos. Based on those recent findings, we suggest that genome-wide anomalies, which persist in fetuses and patients, can for a large majority be explained by a noncanonical first zygotic cleavage event, during which maternal and paternal genomes in a single zygote, segregate to different blastomeres. This process, termed heterogoneic division, provides an overarching theoretical basis for the different presentations of mixoploidy and chimerism.


Assuntos
Aneuploidia , Aberrações Cromossômicas/embriologia , Transtornos Cromossômicos/genética , Desenvolvimento Embrionário/genética , Transtornos Cromossômicos/embriologia , Feminino , Humanos , Gravidez , Triploidia
12.
Mol Psychiatry ; 26(8): 4496-4510, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32015465

RESUMO

Schizophrenia occurs in about one in four individuals with 22q11.2 deletion syndrome (22q11.2DS). The aim of this International Brain and Behavior 22q11.2DS Consortium (IBBC) study was to identify genetic factors that contribute to schizophrenia, in addition to the ~20-fold increased risk conveyed by the 22q11.2 deletion. Using whole-genome sequencing data from 519 unrelated individuals with 22q11.2DS, we conducted genome-wide comparisons of common and rare variants between those with schizophrenia and those with no psychotic disorder at age ≥25 years. Available microarray data enabled direct comparison of polygenic risk for schizophrenia between 22q11.2DS and independent population samples with no 22q11.2 deletion, with and without schizophrenia (total n = 35,182). Polygenic risk for schizophrenia within 22q11.2DS was significantly greater for those with schizophrenia (padj = 6.73 × 10-6). Novel reciprocal case-control comparisons between the 22q11.2DS and population-based cohorts showed that polygenic risk score was significantly greater in individuals with psychotic illness, regardless of the presence of the 22q11.2 deletion. Within the 22q11.2DS cohort, results of gene-set analyses showed some support for rare variants affecting synaptic genes. No common or rare variants within the 22q11.2 deletion region were significantly associated with schizophrenia. These findings suggest that in addition to the deletion conferring a greatly increased risk to schizophrenia, the risk is higher when the 22q11.2 deletion and common polygenic risk factors that contribute to schizophrenia in the general population are both present.


Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Esquizofrenia , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Síndrome de DiGeorge/genética , Humanos , Esquizofrenia/genética
13.
Hum Mol Genet ; 29(21): 3566-3577, 2021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33242073

RESUMO

Myotonic dystrophy type 1 (DM1) is caused by expansion of a CTG repeat in the DMPK gene, where expansion size and somatic mosaicism correlates with disease severity and age of onset. While it is known that the mismatch repair protein MSH2 contributes to the unstable nature of the repeat, its role on other disease-related features, such as CpG methylation upstream of the repeat, is unknown. In this study, we investigated the effect of an MSH2 knock-down (MSH2KD) on both CTG repeat dynamics and CpG methylation pattern in human embryonic stem cells (hESC) carrying the DM1 mutation. Repeat size in MSH2 wild-type (MSH2WT) and MSH2KD DM1 hESC was determined by PacBio sequencing and CpG methylation by bisulfite massive parallel sequencing. We found stabilization of the CTG repeat concurrent with a gradual loss of methylation upstream of the repeat in MSH2KD cells, while the repeat continued to expand and upstream methylation remained unchanged in MSH2WT control lines. Repeat instability was re-established and biased towards expansions upon MSH2 transgenic re-expression in MSH2KD lines while upstream methylation was not consistently re-established. We hypothesize that the hypermethylation at the mutant DM1 locus is promoted by the MMR machinery and sustained by a constant DNA repair response, establishing a potential mechanistic link between CTG repeat instability and upstream CpG methylation. Our work represents a first step towards understanding how epigenetic alterations and repair pathways connect and contribute to the DM1 pathology.


Assuntos
Desmetilação , Instabilidade Genômica , Células-Tronco Embrionárias Humanas/patologia , Proteína 2 Homóloga a MutS/antagonistas & inibidores , Distrofia Miotônica/patologia , Miotonina Proteína Quinase/genética , Expansão das Repetições de Trinucleotídeos , Sistemas CRISPR-Cas , Metilação de DNA , Reparo do DNA , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Distrofia Miotônica/genética
14.
Nat Med ; 26(12): 1912-1918, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33169016

RESUMO

The 22q11.2 deletion syndrome (22q11DS) is associated with a 20-25% risk of schizophrenia. In a cohort of 962 individuals with 22q11DS, we examined the shared genetic basis between schizophrenia and schizophrenia-related early trajectory phenotypes: sub-threshold symptoms of psychosis, low baseline intellectual functioning and cognitive decline. We studied the association of these phenotypes with two polygenic scores, derived for schizophrenia and intelligence, and evaluated their use for individual risk prediction in 22q11DS. Polygenic scores were not only associated with schizophrenia and baseline intelligence quotient (IQ), respectively, but schizophrenia polygenic score was also significantly associated with cognitive (verbal IQ) decline and nominally associated with sub-threshold psychosis. Furthermore, in comparing the tail-end deciles of the schizophrenia and IQ polygenic score distributions, 33% versus 9% of individuals with 22q11DS had schizophrenia, and 63% versus 24% of individuals had intellectual disability. Collectively, these data show a shared genetic basis for schizophrenia and schizophrenia-related phenotypes and also highlight the future potential of polygenic scores for risk stratification among individuals with highly, but incompletely, penetrant genetic variants.


Assuntos
Síndrome de DiGeorge/genética , Variação Genética/genética , Deficiência Intelectual/genética , Esquizofrenia/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Disfunção Cognitiva/epidemiologia , Disfunção Cognitiva/genética , Disfunção Cognitiva/fisiopatologia , Estudos de Coortes , Síndrome de DiGeorge/epidemiologia , Síndrome de DiGeorge/fisiopatologia , Feminino , Humanos , Deficiência Intelectual/epidemiologia , Deficiência Intelectual/fisiopatologia , Masculino , Pessoa de Meia-Idade , Herança Multifatorial/genética , Fenótipo , Fatores de Risco , Esquizofrenia/epidemiologia , Esquizofrenia/fisiopatologia , Adulto Jovem
15.
Am J Hum Genet ; 107(4): 753-762, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32910914

RESUMO

Lamin B1 plays an important role in the nuclear envelope stability, the regulation of gene expression, and neural development. Duplication of LMNB1, or missense mutations increasing LMNB1 expression, are associated with autosomal-dominant leukodystrophy. On the basis of its role in neurogenesis, it has been postulated that LMNB1 variants could cause microcephaly. Here, we confirm this hypothesis with the identification of de novo mutations in LMNB1 in seven individuals with pronounced primary microcephaly (ranging from -3.6 to -12 SD) associated with relative short stature and variable degree of intellectual disability and neurological features as the core symptoms. Simplified gyral pattern of the cortex and abnormal corpus callosum were noted on MRI of three individuals, and these individuals also presented with a more severe phenotype. Functional analysis of the three missense mutations showed impaired formation of the LMNB1 nuclear lamina. The two variants located within the head group of LMNB1 result in a decrease in the nuclear localization of the protein and an increase in misshapen nuclei. We further demonstrate that another mutation, located in the coil region, leads to increased frequency of condensed nuclei and lower steady-state levels of lamin B1 in proband lymphoblasts. Our findings collectively indicate that de novo mutations in LMNB1 result in a dominant and damaging effect on nuclear envelope formation that correlates with microcephaly in humans. This adds LMNB1 to the growing list of genes implicated in severe autosomal-dominant microcephaly and broadens the phenotypic spectrum of the laminopathies.


Assuntos
Nanismo/genética , Deficiência Intelectual/genética , Lamina Tipo B/genética , Microcefalia/genética , Mutação , Lâmina Nuclear/genética , Sequência de Aminoácidos , Sequência de Bases , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Pré-Escolar , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Nanismo/diagnóstico por imagem , Nanismo/metabolismo , Nanismo/patologia , Feminino , Expressão Gênica , Humanos , Lactente , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Lamina Tipo B/metabolismo , Linfócitos/metabolismo , Linfócitos/patologia , Imageamento por Ressonância Magnética , Masculino , Microcefalia/diagnóstico por imagem , Microcefalia/metabolismo , Microcefalia/patologia , Lâmina Nuclear/metabolismo , Lâmina Nuclear/patologia
16.
Eur J Med Genet ; 63(11): 104009, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32758660

RESUMO

Interstitial 19q13.11 deletions are associated with ectrodactyly, which has recently been linked to loss-of-function of the UBA2 gene. We report a boy with a de novo frameshift mutation in UBA2 (c.612delA (p.(Glu205Lysfs*63)), presenting with ectrodactyly of the feet associated with learning difficulties and minor physical anomalies. We review genotype-phenotype correlations in patients with chromosomal 19q13.11 microdeletions compared to those with intragenic UBA2 mutations.


Assuntos
Anormalidades Múltiplas/genética , Transtornos Cromossômicos/genética , Deformidades Congênitas dos Membros/genética , Fenótipo , Enzimas Ativadoras de Ubiquitina/genética , Anormalidades Múltiplas/patologia , Pré-Escolar , Deleção Cromossômica , Transtornos Cromossômicos/patologia , Mutação da Fase de Leitura , Genótipo , Humanos , Deformidades Congênitas dos Membros/patologia , Masculino
18.
Acta Obstet Gynecol Scand ; 99(6): 722-730, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32176318

RESUMO

INTRODUCTION: Noninvasive prenatal testing (NIPT) using cell-free fetal DNA has increasingly been adopted as a screening tool for fetal aneuploidies. Several studies have discussed benefits and limitations of NIPT compared with both ultrasound and invasive procedures, but in spite of some shortcomings NIPT has become extensively used within the last 5 years. This study aims to describe the current use of NIPT in Europe, Australia and the USA. MATERIAL AND METHODS: We conducted a survey to describe the current use of NIPT. Colleagues filled in a simple email-based questionnaire on NIPT in their own country, providing information on (a) access to NIPT, (b) NIPT's chromosomal coverage, (c) financial coverage of NIPT for the patient and (d) the proportion of women using NIPT in pregnancy. Some data are best clinical estimates, due to a lack of national data. RESULTS: In Europe, 14 countries have adopted NIPT into a national policy/program. Two countries (Belgium and the Netherlands) offer NIPT for all pregnant women, whereas most other European countries have implemented NIPT as an offer for higher risk women after first trimester screening. In Australia, either combined first trimester screening (cFTS) or NIPT is used as a primary prenatal screening test. In the USA, there are no national consensus policies on the use of NIPT; however, NIPT is widely implemented. In most European countries offering NIPT, the proportion of women using NIPT is well below 25%. In the Netherlands, Austria, Italy, Spain and most Australian and American States, 25%-50% of women have NIPT performed and in Belgium testing is above 75%. In most countries, NIPT reports on trisomy 13, 18 and 21, and often also on sex chromosome aneuploidies. Only in Belgium, the Netherlands, Lithuania, Greece, Cyprus and Italy is NIPT offered predominantly as a genome-wide test (including some microdeletions or a whole genome coverage). CONCLUSIONS: Noninvasive prenatal testing has been widely adopted throughout Europe, Australia and the USA, but only a few countries/states have a national policy on the use of NIPT. The variation in NIPT utilization is considerable.


Assuntos
Teste Pré-Natal não Invasivo/estatística & dados numéricos , Aneuploidia , Austrália , Europa (Continente) , Feminino , Política de Saúde , Humanos , Gravidez , Diagnóstico Pré-Natal , Cromossomos Sexuais , Inquéritos e Questionários , Trissomia , Estados Unidos
19.
Clin Genet ; 97(4): 595-600, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32022899

RESUMO

Ectodermal dysplasias are a family of genodermatoses commonly associated with variants in the ectodysplasin/NF-κB or the Wnt/ß-catenin pathways. Both pathways are involved in signal transduction from ectoderm to mesenchyme during the development of ectoderm-derived structures. Wnt/ß-catenin pathway requires the lymphoid enhancer-binding factor 1 (LEF1), a nuclear mediator, to activate target gene expression. In mice, targeted inactivation of the LEF1 gene results in a complete block of development of multiple ectodermal appendages. We report two unrelated patients with 4q25 de novo deletion encompassing LEF1, associated with severe oligodontia of primary and permanent dentition, hypotrichosis and hypohidrosis compatible with hypohidrotic ectodermal dysplasia. Taurodontism and a particular alveolar bone defect were also observed in both patients. So far, no pathogenic variants or variations involving the LEF1 gene have been reported in human. We provide further evidence for LEF1 haploinsufficiency role in ectodermal dysplasia and delineate its clinical phenotype.


Assuntos
Displasia Ectodérmica Anidrótica Tipo 1/genética , Displasia Ectodérmica/genética , Fator 1 de Ligação ao Facilitador Linfoide/genética , Adulto , Animais , Pré-Escolar , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/patologia , Displasia Ectodérmica Anidrótica Tipo 1/diagnóstico , Displasia Ectodérmica Anidrótica Tipo 1/patologia , Feminino , Haploinsuficiência/genética , Humanos , Masculino , Camundongos , NF-kappa B/genética , Transdução de Sinais/genética , Adulto Jovem , beta Catenina/genética
20.
Genet Med ; 22(2): 326-335, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31474763

RESUMO

PURPOSE: The 22q11.2 deletion syndrome (22q11.2DS) is the most common microdeletion in humans, with highly variable phenotypic expression. Whereas congenital heart defects, palatal anomalies, immunodeficiency, hypoparathyroidism, and neuropsychiatric conditions are observed in over 50% of patients with 22q11DS, a subset of patients present with additional "atypical" findings such as craniosynostosis and anorectal malformations. Recently, pathogenic variants in the CDC45 (Cell Division Cycle protein 45) gene, located within the LCR22A-LCR22B region of chromosome 22q11.2, were noted to be involved in the pathogenesis of craniosynostosis. METHODS: We performed next-generation sequencing on DNA from 15 patients with 22q11.2DS and atypical phenotypic features such as craniosynostosis, short stature, skeletal differences, and anorectal malformations. RESULTS: We identified four novel rare nonsynonymous variants in CDC45 in 5/15 patients with 22q11.2DS and craniosynostosis and/or other atypical findings. CONCLUSION: This study supports CDC45 as a causative gene in craniosynostosis, as well as a number of other anomalies. We suggest that this association results in a condition independent of Meier-Gorlin syndrome, perhaps representing a novel condition and/or a cause of features associated with Baller-Gerold syndrome. In addition, this work confirms that the phenotypic variability observed in a subset of patients with 22q11.2DS is due to pathogenic variants on the nondeleted chromosome.


Assuntos
Proteínas de Ciclo Celular/genética , Síndrome de DiGeorge/genética , Alelos , Proteínas de Ciclo Celular/metabolismo , Criança , Pré-Escolar , Deleção Cromossômica , Cromossomos/genética , Cromossomos Humanos Par 22/genética , Craniossinostoses/genética , Síndrome de DiGeorge/metabolismo , Feminino , Cardiopatias Congênitas/genética , Humanos , Masculino , Fenótipo , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA