Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
iScience ; 26(12): 108364, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38025786

RESUMO

Prdm12 is a transcriptional regulator essential for the emergence of the somatic nociceptive lineage during sensory neurogenesis. The exact mechanisms by which Prdm12 promotes nociceptor development remain, however, poorly understood. Here, we report that the trigeminal and dorsal root ganglia hypoplasia induced by the loss of Prdm12 involves Bax-dependent apoptosis and that it is accompanied by the ectopic expression of the visceral sensory neuron determinants Phox2a and Phox2b, which is, however, not sufficient to impose a complete fate switch in surviving somatosensory neurons. Mechanistically, our data reveal that Prdm12 is required from somatosensory neural precursors to early post-mitotic differentiating nociceptive neurons to repress Phox2a/b and that its repressive function is context dependent. Together, these findings reveal that besides its essential role in nociceptor survival during development, Prdm12 also promotes nociceptor fate via an additional mechanism, by preventing precursors from engaging into an alternate Phox2 driven visceral neuronal type differentiation program.

2.
Science ; 375(6582): eabm4459, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35175798

RESUMO

The blood-brain barrier (BBB) protects the central nervous system (CNS) from harmful blood-borne factors. Although BBB dysfunction is a hallmark of several neurological disorders, therapies to restore BBB function are lacking. An attractive strategy is to repurpose developmental BBB regulators, such as Wnt7a, into BBB-protective agents. However, safe therapeutic use of Wnt ligands is complicated by their pleiotropic Frizzled signaling activities. Taking advantage of the Wnt7a/b-specific Gpr124/Reck co-receptor complex, we genetically engineered Wnt7a ligands into BBB-specific Wnt activators. In a "hit-and-run" adeno-associated virus-assisted CNS gene delivery setting, these new Gpr124/Reck-specific agonists protected BBB function, thereby mitigating glioblastoma expansion and ischemic stroke infarction. This work reveals that the signaling specificity of Wnt ligands is adjustable and defines a modality to treat CNS disorders by normalizing the BBB.


Assuntos
Barreira Hematoencefálica/fisiologia , Proteínas Ligadas por GPI/agonistas , Glioblastoma/terapia , Receptores Acoplados a Proteínas G/agonistas , Acidente Vascular Cerebral/terapia , Proteínas Wnt/genética , Via de Sinalização Wnt , Animais , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Receptores Frizzled/metabolismo , Glioblastoma/metabolismo , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese , Sistema Nervoso/embriologia , Engenharia de Proteínas , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Acidente Vascular Cerebral/metabolismo , Proteínas Wnt/química , Proteínas Wnt/metabolismo , Xenopus laevis , Peixe-Zebra
3.
Pain ; 163(8): e927-e941, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34961757

RESUMO

ABSTRACT: Prdm12 is a conserved epigenetic transcriptional regulator that displays restricted expression in nociceptors of the developing peripheral nervous system. In mice, Prdm12 is required for the development of the entire nociceptive lineage. In humans, PRDM12 mutations cause congenital insensitivity to pain, likely because of the loss of nociceptors. Prdm12 expression is maintained in mature nociceptors suggesting a yet-to-be explored functional role in adults. Using Prdm12 inducible conditional knockout mouse models, we report that in adult nociceptors Prdm12 is no longer required for cell survival but continues to play a role in the transcriptional control of a network of genes, many of them encoding ion channels and receptors. We found that disruption of Prdm12 alters the excitability of dorsal root ganglion neurons in culture. Phenotypically, we observed that mice lacking Prdm12 exhibit normal responses to thermal and mechanical nociceptive stimuli but a reduced response to capsaicin and hypersensitivity to formalin-induced inflammatory pain. Together, our data indicate that Prdm12 regulates pain-related behavior in a complex way by modulating gene expression in adult nociceptors and controlling their excitability. The results encourage further studies to assess the potential of Prdm12 as a target for analgesic development.


Assuntos
Proteínas de Transporte , Gânglios Espinais , Proteínas do Tecido Nervoso , Nociceptores , Animais , Proteínas de Transporte/genética , Gânglios Espinais/metabolismo , Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Nociceptores/fisiologia , Dor/genética , Dor/metabolismo
4.
Front Cell Dev Biol ; 8: 587699, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33195244

RESUMO

Sensory fibers of the peripheral nervous system carry sensation from specific sense structures or use different tissues and organs as receptive fields, and convey this information to the central nervous system. In the head of vertebrates, each cranial sensory ganglia and associated nerves perform specific functions. Sensory ganglia are composed of different types of specialized neurons in which two broad categories can be distinguished, somatosensory neurons relaying all sensations that are felt and visceral sensory neurons sensing the internal milieu and controlling body homeostasis. While in the trunk somatosensory neurons composing the dorsal root ganglia are derived exclusively from neural crest cells, somato- and visceral sensory neurons of cranial sensory ganglia have a dual origin, with contributions from both neural crest and placodes. As most studies on sensory neurogenesis have focused on dorsal root ganglia, our understanding of the molecular mechanisms underlying the embryonic development of the different cranial sensory ganglia remains today rudimentary. However, using single-cell RNA sequencing, recent studies have made significant advances in the characterization of the neuronal diversity of most sensory ganglia. Here we summarize the general anatomy, function and neuronal diversity of cranial sensory ganglia. We then provide an overview of our current knowledge of the transcriptional networks controlling neurogenesis and neuronal diversification in the developing sensory system, focusing on cranial sensory ganglia, highlighting specific aspects of their development and comparing it to that of trunk sensory ganglia.

5.
Cell Rep ; 26(13): 3522-3536.e5, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917309

RESUMO

In humans, many cases of congenital insensitivity to pain (CIP) are caused by mutations of components of the NGF/TrkA signaling pathway, which is required for survival and specification of nociceptors and plays a major role in pain processing. Mutations in PRDM12 have been identified in CIP patients that indicate a putative role for this transcriptional regulator in pain sensing. Here, we show that Prdm12 expression is restricted to developing and adult nociceptors and that its genetic ablation compromises their viability and maturation. Mechanistically, we find that Prdm12 is required for the initiation and maintenance of the expression of TrkA by acting as a modulator of Neurogenin1/2 transcription factor activity, in frogs, mice, and humans. Altogether, our results identify Prdm12 as an evolutionarily conserved key regulator of nociceptor specification and as an actionable target for new pain therapeutics.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , Nociceptores/citologia , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Evolução Molecular , Feminino , Gânglios Sensitivos/citologia , Técnicas de Inativação de Genes , Células-Tronco Embrionárias Humanas , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Crista Neural/citologia , Nociceptores/metabolismo , Receptor trkA/metabolismo , Tretinoína/fisiologia , Xenopus laevis
6.
Cell Cycle ; 14(12): 1799-808, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25891934

RESUMO

PR homology domain-containing member 12 (PRDM12) belongs to a family of conserved transcription factors implicated in cell fate decisions. Here we show that PRDM12 is a key regulator of sensory neuronal specification in Xenopus. Modeling of human PRDM12 mutations that cause hereditary sensory and autonomic neuropathy (HSAN) revealed remarkable conservation of the mutated residues in evolution. Expression of wild-type human PRDM12 in Xenopus induced the expression of sensory neuronal markers, which was reduced using various human PRDM12 mutants. In Drosophila, we identified Hamlet as the functional PRDM12 homolog that controls nociceptive behavior in sensory neurons. Furthermore, expression analysis of human patient fibroblasts with PRDM12 mutations uncovered possible downstream target genes. Knockdown of several of these target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE) in Drosophila sensory neurons resulted in altered cellular morphology and impaired nociception. These data show that PRDM12 and its functional fly homolog Hamlet are evolutionary conserved master regulators of sensory neuronal specification and play a critical role in pain perception. Our data also uncover novel pathways in multiple species that regulate evolutionary conserved nociception.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/fisiologia , Neurônios/patologia , Percepção da Dor , Sequência de Aminoácidos , Animais , Linhagem da Célula , Cristalografia por Raios X , Drosophila , Feminino , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Humanos , Imuno-Histoquímica , Masculino , Dados de Sequência Molecular , Mutação , Neurogênese/genética , Neurônios/metabolismo , Estrutura Terciária de Proteína , Células Receptoras Sensoriais/metabolismo , Homologia de Sequência de Aminoácidos , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA