Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Toxicol In Vitro ; 70: 105044, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33130054

RESUMO

A prospective study of the Bovine Corneal Opacity and Permeability (BCOP) Laser Light-Based Opacitometer (LLBO) test method was conducted to evaluate its usefulness to identify chemicals as inducing serious eye damage (Cat. 1) or chemicals not requiring classification for eye irritation (No Cat.) applying United Nations Globally Harmonized System of Classification and Labelling of Chemicals (UN GHS). The aim was to demonstrate the reproducibility of the BCOP LLBO protocol for liquids and solids and define its predictive capacity. Briefly, 145 chemicals were simultaneously tested with BCOP LLBO and OP-KIT (OECD TG 437), one to two times in one laboratory. When used to identify Cat. 1, the BCOP LLBO has a false negative rate (FNR) of 24.1% (N = 56) compared to 34.8% (N = 56) for the BCOP OP-KIT, with a comparable false positive rate (FPR, N = 89) of 18.5% and 20.8%, respectively. When used to identify chemicals not requiring classification (No Cat.) the BCOP LLBO and BCOP OP-KIT had a FNR (N = 104) of 6.2% and 7.2% and a FPR (N = 41) of 45.1% and 42.7%, respectively. The OP-KIT and LLBO devices are interchangeable at no cost to data quality and reliability. The OP-KIT and LLBO devices are interchangeable at no cost to data quality and reliability. The performance of the LLBO is at least as good as the OP-KIT, both methods can be used to identify UN GHS Cat. 1 and UN GHS No Cat. chemicals.


Assuntos
Opacidade da Córnea/induzido quimicamente , Irritantes/toxicidade , Testes de Toxicidade/métodos , Alternativas aos Testes com Animais , Animais , Bovinos , Olho/efeitos dos fármacos , Olho/metabolismo , Lasers , Luz , Permeabilidade/efeitos dos fármacos
2.
Neuroimage ; 208: 116470, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31863914

RESUMO

Establishing the associations between magnetic resonance spectroscopy (MRS)-assessed gamma-aminobutyric acid (GABA) levels and transcranial magnetic stimulation (TMS)-derived 'task-related' modulations in GABAA receptor-mediated inhibition and how these associations change with advancing age is a topic of interest in the field of human neuroscience. In this study, we identified the relationship between GABA levels and task-related modulations in GABAA receptor-mediated inhibition in the dominant (left) and non-dominant (right) sensorimotor (SM) cortices. GABA levels were measured using edited MRS and task-related GABAA receptor-mediated inhibition was measured using a short-interval intracortical inhibition (SICI) TMS protocol during the preparation and premotor period of a choice reaction time (CRT) task in 25 young (aged 18-33 years) and 25 older (aged 60-74 years) adults. Our results demonstrated that GABA levels in both SM voxels were lower in older adults as compared to younger adults; and higher SM GABA levels in the dominant as compared to the non-dominant SM voxel pointed to a lateralization effect, irrespective of age group. Furthermore, older adults showed decreased GABAA receptor-mediated inhibition in the preparation phase of the CRT task within the dominant primary motor cortex (M1), as compared to young adults. Finally, results from an exploratory correlation analysis pointed towards positive relationships between MRS-assessed GABA levels and TMS-derived task-related SICI measures. However, after correction for multiple comparisons none of the correlations remained significant.


Assuntos
Lateralidade Funcional/fisiologia , Espectroscopia de Ressonância Magnética , Inibição Neural/fisiologia , Desempenho Psicomotor/fisiologia , Receptores de GABA-A/metabolismo , Córtex Sensório-Motor/fisiologia , Estimulação Magnética Transcraniana , Ácido gama-Aminobutírico/metabolismo , Adolescente , Adulto , Fatores Etários , Idoso , Humanos , Pessoa de Meia-Idade , Córtex Motor/diagnóstico por imagem , Córtex Motor/fisiologia , Imagem Multimodal , Córtex Sensório-Motor/diagnóstico por imagem , Córtex Sensório-Motor/metabolismo , Fatores de Tempo , Adulto Jovem
3.
Toxicol In Vitro ; 59: 100-114, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30981694

RESUMO

The focus of Cosmetics Europe's ocular toxicity programme is on development of testing strategies and defined approaches for identification of ocular effects of chemicals in the context of OECD's Guidance Document on an Integrated Approach on Testing and Assessment (IATA) for Serious Eye Damage and Eye Irritation. Cosmetics Europe created a comprehensive database of chemicals for which in vitro data are available with corresponding historical in vivo Draize eye data and physicochemical properties. This database allowed further exploration of the initially proposed strategies from the CON4EI project and to identify opportunities for refinement. One key outcome of this project is that combining in vitro test methods (RhCE and BCOP LLBO) with physicochemical properties in a two-step Bottom-Up approach applicable to neat liquids, resulted in an improvement of the specificity, without reducing the sensitivity, when compared to the combination of in vitro methods alone. The Bottom-Up approach proposed here for neat liquids correctly predicted 58.3% (EpiOcular™ EIT followed by BCOP LLBO) to 62.6% (SkinEthic™ HCE EIT followed by BCOP LLBO) of No Cat., 59.1% to 68.7% of Cat. 2, and 76.5% of Cat. 1. Incorporating specific physicochemical properties with this Bottom-Up approach increased the correct identification of No Cat. neat liquids to between 72.7% and 79.7%.


Assuntos
Alternativas aos Testes com Animais , Cosméticos/toxicidade , Irritantes/toxicidade , Testes de Toxicidade/métodos , Animais , Bovinos , Opacidade da Córnea/induzido quimicamente , Epitélio Corneano/efeitos dos fármacos , Humanos
4.
Toxicol In Vitro ; 57: 154-163, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30817952

RESUMO

The focus of Cosmetics Europe's programme on serious eye damage/eye irritation is on development of testing strategies and defined approaches for identification of ocular effects of chemicals in the context of OECD's Guidance Document on an Integrated Approach on Testing and Assessment (IATA) for Serious Eye Damage and Eye Irritation. Cosmetics Europe created a comprehensive database of chemicals for which in vitro data are available with corresponding historical in vivo Draize eye data. This database allowed further exploration of the initially proposed strategies from the CON4EI project and to identify opportunities for refinement. The current analysis focused on the development of a defined approach, applicable to liquid non-surfactant chemicals, neat and in dilution, that can distinguish between the three UN GHS categories (Cat. 1, Cat. 2, and No Cat.). Combining the modified-protocol Short Time Exposure (STE) test method (OECD TG 491 with extension to highly volatile substances) with the Bovine Corneal Opacity and Permeability Laser Light-Based Opacitometer (BCOP LLBO) test method in a Bottom-Up approach identified 81.2% Cat. 1, 56.3% Cat. 2, and 85.3% No. Cat correctly, with an NPV of 96.7% and a PPV of 68.6%. Therefore, the performance of the defined approach was better than the standalone test methods.


Assuntos
Cosméticos/toxicidade , Olho/efeitos dos fármacos , Irritantes/toxicidade , Testes de Toxicidade/métodos , Animais , Bovinos , Opacidade da Córnea/induzido quimicamente
5.
Toxicol In Vitro ; 49: 6-10, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29598996

RESUMO

Assessment of the acute eye irritation potential is part of the international regulatory requirements for testing of chemicals. In the past, several prospective and retrospective validation studies have taken place in the area of serious eye damage/eye irritation testing. Success in terms of complete replacement of the regulatory in vivo Draize rabbit eye test has not yet been achieved. A very important aspect to ensure development of successful alternative test methods and/or strategies for serious eye damage/eye irritation testing is the selection of appropriate reference chemicals. A set of 80 reference chemicals was selected for the CEFIC-LRI-AIMT6-VITO CON4EI (CONsortium for in vitro Eye Irritation testing strategy) project, in collaboration with Cosmetics Europe, from the Draize Reference Database published by Cosmetics Europe based on key criteria that were set in their paper (e.g. balanced by important driver of classification and physical state). The most important goals of the CON4EI project were to identify the performance of eight in vitro alternative tests in terms of driver of classification and to identify similarities/differences between the methods in order the build a successful testing strategy that can discriminate between all UN GHS categories. This paper provides background on selection of the test chemicals.

6.
Toxicol In Vitro ; 49: 90-98, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28941583

RESUMO

Assessment of ocular irritation is a regulatory requirement in safety evaluation of industrial and consumer products. Although a number of in vitro ocular irritation assays exist, none are capable of fully categorizing chemicals as stand-alone assays. Therefore, the CEFIC-LRI-AIMT6-VITO CON4EI (CONsortium for in vitro Eye Irritation testing strategy) project was developed to assess the reliability of eight in vitro test methods and computational models as well as establishing an optimal tiered-testing strategy. For three computational models (Toxtree, and Case Ultra EYE_DRAIZE and EYE_IRR) performance parameters were calculated. Coverage ranged from 15 to 58%. Coverage was 2 to 3.4 times higher for liquids than for solids. The lowest number of false positives (5%) was reached with EYE_IRR; this model however also gave a high number of false negatives (46%). The lowest number of false negatives (25%) was seen with Toxtree; for liquids Toxtree predicted the lowest number of false negatives (11%), for solids EYE_DRAIZE did (17%). It can be concluded that the training sets should be enlarged with high quality data. The tested models are not yet sufficiently powerful for stand-alone evaluations, but that they can surely become of value in an integrated weight-of-evidence approach in hazard assessment.


Assuntos
Olho/efeitos dos fármacos , Irritantes/classificação , Irritantes/toxicidade , Modelos Biológicos , Animais , Simulação por Computador , Relação Quantitativa Estrutura-Atividade , Coelhos , Testes de Toxicidade
7.
Toxicol In Vitro ; 49: 77-89, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28870540

RESUMO

Assessment of ocular irritancy is an international regulatory requirement in the safety evaluation of industrial and consumer products. Although many in vitro ocular irritation assays exist, alone they are incapable of fully categorizing chemicals. The objective of CEFIC-LRI-AIMT6-VITO CON4EI (CONsortium for in vitro Eye Irritation testing strategy) project was to develop tiered testing strategies for eye irritation assessment that can lead to complete replacement of the in vivo Draize rabbit eye test (OECD TG 405). A set of 80 reference chemicals was tested with seven test methods, one method was the Slug Mucosal Irritation (SMI) test method. The method measures the amount of mucus produced (MP) during a single 1-hour contact with a 1% and 10% dilution of the chemical. Based on the total MP, a classification (Cat 1, Cat 2, or No Cat) is predicted. The SMI test method correctly identified 65.8% of the Cat 1 chemicals with a specificity of 90.5% (low over-prediction rate for in vivo Cat 2 and No Cat chemicals). Mispredictions were predominantly unidirectional towards lower classifications with 26.7% of the liquids and 40% of the solids being underpredicted. In general, the performance was better for liquids than for solids with respectively 76.5% vs 57.1% (Cat 1), 61.5% vs 50% (Cat 2), and 87.5% vs 85.7% (No Cat) being identified correctly.


Assuntos
Olho/efeitos dos fármacos , Gastrópodes , Irritantes/classificação , Irritantes/toxicidade , Mucosa/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais
8.
Toxicol In Vitro ; 49: 65-76, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28801046

RESUMO

Assessment of ocular irritancy is an international regulatory requirement in the safety evaluation of industrial and consumer products. Although many in vitro ocular irritation assays exist, alone they are incapable of fully categorizing chemicals. Therefore, the CEFIC-LRI-AIMT6-VITO CON4EI consortium was developed to assess the reliability of eight in vitro test methods and establish an optimal tiered-testing strategy. One assay selected was the Short Time Exposure (STE) assay. This assay measures the viability of SIRC rabbit corneal cells after 5min exposure to 5% and 0.05% solutions of test material, and is capable of categorizing of Category 1 and No Category chemicals. The accuracy of the STE test method to identify Cat 1 chemicals was 61.3% with 23.7% sensitivity and 95.2% specificity. If non-soluble chemicals and unqualified results were excluded, the performance to identify Cat 1 chemicals remained similar (accuracy 62.2% with 22.7% sensitivity and 100% specificity). The accuracy of the STE test method to identify No Cat chemicals was 72.5% with 66.2% sensitivity and 100% specificity. Excluding highly volatile chemicals, non-surfactant solids and non-qualified results resulted in an important improvement of the performance of the STE test method (accuracy 96.2% with 81.8% sensitivity and 100% specificity). Furthermore, it seems that solids are more difficult to test in the STE, 71.4% of the solids resulted in unqualified results (solubility issues and/or high variation between independent runs) whereas for liquids 13.2% of the results were not qualified, supporting the restriction of the test method regarding the testing of solids.


Assuntos
Córnea/citologia , Irritantes/classificação , Irritantes/toxicidade , Testes de Toxicidade/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Coelhos
9.
Toxicol In Vitro ; 49: 99-115, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28964898

RESUMO

Assessment of acute eye irritation potential is part of the international regulatory requirements for safety testing of chemicals. In the last decades, many efforts have been made in the search for alternative methods to replace the regulatory in vivo Draize rabbit eye test (OECD TG 405). Success in terms of complete replacement of the regulatory in vivo Draize rabbit eye test has not yet been achieved. The main objective of the CEFIC-LRI-AIMT6-VITO CON4EI (CONsortium for in vitro Eye Irritation testing strategy) project was to develop tiered testing strategies for serious eye damage and eye irritation assessment that can lead to complete replacement of OECD TG 405. A set of 80 reference chemicals (e.g. balanced by important driver of classification and physical state), was tested with seven test methods. Based on the results of this project, three different strategies were suggested. We have provided a standalone (EpiOcular ET-50), a two-tiered and three-tiered strategy, that can be used to distinguish between Cat 1 and Cat 2 chemicals and chemicals that do not require classification (No Cat). The two-tiered and three-tiered strategies use an RhCE test method (EpiOcular EIT or SkinEthic™ EIT) at the bottom (identification No Cat) in combination with the BCOP LLBO (two-tiered strategy) or BCOP OP-KIT and SMI (three-tiered strategy) at the top (identification Cat 1). For our proposed strategies, 71.1% - 82.9% Cat 1, 64.2% - 68.5% Cat 2 and ≥80% No Cat chemicals were correctly identified. Also, similar results were obtained for the Top-Down and Bottom-Up approach.


Assuntos
Olho/efeitos dos fármacos , Irritantes/classificação , Irritantes/toxicidade , Testes de Toxicidade/métodos , Animais , Bovinos , Gastrópodes , Humanos
10.
Toxicol In Vitro ; 49: 11-20, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28625465

RESUMO

Assessment of ocular irritancy is an international regulatory requirement and a necessary step in the safety evaluation of industrial and consumer products. Although a number of in vitro ocular irritation assays exist, none are capable of fully categorizing chemicals as a stand-alone assay. Therefore, the CEFIC-LRI-AIMT6-VITO CON4EI (CONsortium for in vitro Eye Irritation testing strategy) project was developed with the goal of assessing the reliability of eight in vitro/alternative test methods as well as establishing an optimal tiered-testing strategy. One of the in vitro assays selected was the validated SkinEthic™ Human Corneal Epithelium Eye Irritation Test method (SkinEthic™ HCE EIT). The SkinEthic™ HCE EIT has already demonstrated its capacity to correctly identify chemicals (both substances and mixtures) not requiring classification and labelling for eye irritation or serious eye damage (No Category). The goal of this study was to evaluate the performance of the SkinEthic™ HCE EIT test method in terms of the important in vivo drivers of classification. For the performance with respect to the drivers all in vivo Cat 1 and No Cat chemicals were 100% correctly identified. For Cat 2 chemicals the liquids and the solids had a sensitivity of 100% and 85.7%, respectively. For the SkinEthic™ HCE EIT test method, 100% concordance in predictions (No Cat versus No prediction can be made) between the two participating laboratories was obtained. The accuracy of the SkinEthic™ HCE EIT was 97.5% with 100% sensitivity and 96.9% specificity. The SkinEthic™ HCE EIT confirms its excellent results of the validation studies.


Assuntos
Epitélio Corneano/efeitos dos fármacos , Irritantes/classificação , Irritantes/toxicidade , Testes de Toxicidade/métodos , Alternativas aos Testes com Animais , Humanos , Reprodutibilidade dos Testes
11.
Toxicol In Vitro ; 44: 44-48, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28595836

RESUMO

Assessment of the acute eye irritation potential is part of the international regulatory requirements for testing of chemicals. In the past, several prospective and retrospective validation studies have taken place in the area of serious eye damage/eye irritation testing. Success in terms of complete replacement of the regulatory in vivo Draize rabbit eye test has not yet been achieved. A very important aspect to ensure development of successful alternative test methods and/or strategies for serious eye damage/eye irritation testing is the selection of appropriate reference chemicals. A set of 80 reference chemicals was selected for the CEFIC-LRI-AIMT6-VITO CON4EI (CONsortium for in vitro Eye Irritation testing strategy) project, in collaboration with Cosmetics Europe, from the Draize Reference Database published by Cosmetics Europe based on key criteria that were set in their paper (e.g. balanced by important driver of classification and physical state). The most important goals of the CON4EI project were to identify the performance of eight in vitro alternative tests in terms of driver of classification and to identify similarities/differences between the methods in order the build a successful testing strategy that can discriminate between all UN GHS categories. This paper provides background on selection of the test chemicals.


Assuntos
Alternativas aos Testes com Animais , Irritantes/classificação , Irritantes/toxicidade , Testes de Toxicidade , Animais , Bases de Dados Factuais , Olho/efeitos dos fármacos , Rotulagem de Produtos , Coelhos
12.
Toxicol In Vitro ; 22(6): 1419-31, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18603401

RESUMO

This review first describes the mechanism and cell types involved in allergic asthma, which is a complex clinical disease characterized by airway obstruction, airway inflammation and airway hyperresponsiveness to a variety of stimuli. The development of allergic asthma exists of three phases, namely the induction phase, the early-phase asthmatic reaction (EAR) and the late-phase asthmatic reaction (LAR). In the induction phase, antigen-presenting cells play a major role. Most important cells in the EAR are mast cells, and during the LAR, various cell types, such as eosinophils, neutrophils, T cells, macrophages, dendritic cells (DCs), and cells that endow structure are involved. In occupational asthma, this immunological mechanism is involved in 90% of the cases. The second part of this review gives an overview of in vitro models to assess the hazardous potential of high- and low-molecular weight chemicals on the respiratory system. In order to develop a good in vitro model for respiratory allergy, the choice of appropriate cell types is important. Epithelial cells, macrophages and DCs are currently the most used models in this field of research.


Assuntos
Alérgenos/imunologia , Asma/imunologia , Modelos Biológicos , Alérgenos/metabolismo , Animais , Asma/metabolismo , Humanos , Doenças Profissionais/imunologia , Doenças Profissionais/metabolismo , Exposição Ocupacional/efeitos adversos , Sistema Respiratório/citologia , Sistema Respiratório/imunologia
13.
Toxicol In Vitro ; 22(4): 1107-14, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18395406

RESUMO

Occupational exposure to chemicals is one of the main causes of respiratory allergy and asthma. Identification of chemicals that trigger allergic asthma is difficult as underlying processes and specific markers have not yet been clearly defined. Moreover, adequate classification of the respiratory toxicity of chemicals is hampered due to the lack of validated in vivo and in vitro test methods. The study of differential gene expression profiles in appropriate human in vitro cell systems is a promising approach to identify selective markers for respiratory allergy. As alveolar macrophages display important immunological and inflammatory properties in response to foreign substances in the lung, we aimed at gaining more insight in changes of human macrophages transcriptome and to identify selective genetic markers for respiratory sensitization in response to hexamethylene diisocyanate (HDI). In vitro cultures of human THP-1 cells were differentiated into macrophages and exposed to 55 microg/ml HDI for 6 and 10h. Using human oligonucleotide microarrays, changes were observed in the expression of genes that are involved in diverse biological and molecular processes, including detoxification, oxidative stress, cytokine signaling, and apoptosis, which can lead to the development of asthma. These genes are possible markers for respiratory sensitization caused by isocyanates.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Cianatos/toxicidade , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Diferenciação Celular , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Humanos , Isocianatos , Leucemia Monocítica Aguda , Macrófagos , Exposição Ocupacional , Análise de Sequência com Séries de Oligonucleotídeos , Fatores de Tempo
14.
Toxicol In Vitro ; 19(7): 903-7, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16112833

RESUMO

The aim of this study was to obtain more insight into the effect of diesel exhaust particles (DEP) on the maturation of primary human dendritic cells. Monocyte-derived dendritic cells (Mo-DC) derived from seven different donors were exposed to different DEP concentrations (0.2,2,20,200 and 2,000 ng/ml) in the presence or absence of lipopolysaccharide (LPS), and changes in the surface expression of HLA-DR, CD86 and CD83 were examined. Exposure of Mo-DC to DEP alone did not alter expression levels of any of the markers. Treatment with LPS alone increased the expression levels of all three surface markers, although the levels were not significantly different compared to untreated DCs. The LPS-induced marker expression could be further enhanced by co-stimulation of the cells with DEP. Statistical significantly increased levels of CD83 expression were observed after exposure to 0.2 (p=0.018), 20 (p=0.010) and 200 ng/ml (p=0.047) DEP combined with LPS in the group of responders. We conclude that DEP has an adjuvant effect on LPS-induced maturation of Mo-DC.


Assuntos
Células Dendríticas/efeitos dos fármacos , Emissões de Veículos/toxicidade , Antígenos CD/biossíntese , Antígenos de Superfície/biossíntese , Antígeno B7-2/biossíntese , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/imunologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Citometria de Fluxo , Antígeno HLA-DR1/biossíntese , Humanos , Imunoglobulinas/biossíntese , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/biossíntese , Antígeno CD83
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA