Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Environ Sci Pollut Res Int ; 31(17): 26261-26281, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499921

RESUMO

Nutrient imbalances may negatively affect the health status of forests exposed to multiple stress factors, including drought and bark beetle calamities. We studied the origin of base cations in runoff from a small Carpathian catchment underlain by base-poor flysch turbidites using magnesium (Mg), calcium (Ca) and strontium (Sr) isotope composition of 10 ecosystem compartments. Our objective was to constrain conclusions drawn from long-term hydrochemical monitoring of inputs and outputs. Annual export of Mg, Ca and Sr exceeds 5-to-15 times their atmospheric input. Mass budgets per se thus indicate sizeable net leaching of Mg, Ca and Sr from bedrock sandstones and claystones. Surprisingly, δ26Mg, δ44Ca and 87Sr/86Sr isotope ratios of runoff were practically identical to those of atmospheric deposition and soil water but significantly different from bedrock isotope ratios. We did not find any carbonates in the studied area as a hypothetical, easily dissolvable source of base cations whose isotope composition might corroborate the predominance of geogenic base cations in the runoff. Marine carbonates typically have lower δ26 Mg and 87Sr/86Sr ratios, and silicate sediments often have higher δ26Mg and 87Sr/86Sr ratios than runoff at the study site. Mixing of these two sources, if confirmed, could reconcile the flux and isotope data.


Assuntos
Cálcio , Magnésio , Cálcio/análise , Magnésio/análise , Ecossistema , Monitoramento Ambiental , Isótopos de Estrôncio/análise , Isótopos , Cátions , Carbonatos
2.
Environ Pollut ; 328: 121609, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37044255

RESUMO

Transect sampling is an under-exploited tool in isotope studies of atmospheric pollution. Few studies have combined Zn and Pb isotope ratios to investigate whether atmospheric pollution at a receptor site is dominated by a different anthropogenic source of each of these toxic elements. It has been also unclear whether pollution abatement strategies in Central Europe have already resulted in regionally well-mixed background isotope signature of atmospheric Zn and Pb. Zinc and lead isotope ratios were determined in snow collected along a rural transect downwind from the Upper Silesian industrial area (southern Poland). Spatial and temporal gradients in δ66Zn and 206Pb/207Pb ratios at four sites were compared with those of ore and coal collected in eight Czech and Polish mining districts situated at distances of up to 500 km. Snow pollution was extremely high 8 km from Olkusz in 2011 (1670 µg Zn L-1; 240 µg Pb L-1), sharply decreased between 2011 and 2018, and remained low in 2019-2021. Snow pollution was lower at sites situated 28-68 km from Olkusz. Across study sites, mean δ66Zn and 206Pb/207Pb ratios of snow were -0.13‰ and 1.155, respectively. With an increasing distance from Olkusz, the δ66Zn values first increased and then decreased, while the 206Pb/207Pb ratios first decreased and then increased. The δ66Zn values in snow plotted closer to those of Upper Silesian ores (-0.20‰) than to the δ66Zn values of Upper Silesian stone coal (0.52‰), showing predominance of smelter-derived over power-plant derived Zn pollution. The 206Pb/207Pb ratios of Upper Silesian coal (1.171) and Upper Silesian ores (1.180) were higher compared to those of snow. A206Pb/207Pb vs.208Pb/207Pb plot identified legacy pollution from leaded gasoline as the low-radiogenic mixing end-member. Across the transect sites, only the last sampling campaign exhibited a high degree of isotope homogenization for both Zn and Pb.


Assuntos
Poluição Ambiental , Chumbo , Zinco/análise , Isótopos/análise , Carvão Mineral , Monitoramento Ambiental/métodos
3.
Environ Sci Pollut Res Int ; 30(16): 48232-48247, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36752921

RESUMO

Soil solution chemistry depends largely on mineralogy and organic matter properties of soil horizons with which they interact. Differing lithologies within a given catchment area can influence variability in soil cation exchange capacities and affect solute transport. Zero-tension and tension lysimeters were used to evaluate the fast transport of solutes in the topsoil vs. slow diffusional matrix flow at the subsoil of three contrasting lithology catchments in a mid-elevation mountain forest. Our aim was to test the feasibility of lysimeters' hydrochemical data as a gauge for legacy subsoil pollution. Due to contrasting lithologies, atmospheric legacy pollution prevailing at the soil-regolith interface is differently yet consistently reflected by beryllium, lead, and chromium soil solution concentrations of the three catchments. Geochemical (dis)equilibrium between the soil and soil matrix water governed the hydrochemistry of the soil solutions at the time of collection, potentially contributing to decreased dissolved concentrations with increased depths at sites with higher soil pH. A complementary isotopic δ18O runoff generation model constrained potential seasonal responses and pointed to sufficiently long water-regolith interactions as to permit important seasonal contributions of groundwater enriched in chemical species to the topsoil levels. Our study also reflects subsoil equilibration with atmospheric solutes deposited at the topsoil and thus provides guidance for evaluating legacy pollution in soil profiles derived from contrasting lithology.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Metais , Solo , Metais/análise , Solo/química , Água , Poluentes da Água/análise
4.
Sci Total Environ ; 869: 161697, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36690116

RESUMO

Nitrogen (N) deposition, a key process of atmospheric self-cleaning, represents an important pathway for nutrients and pollutants to ecosystems. Enhanced N deposition flux contributes to acidification, eutrophication and loss of biodiversity. N-NO3- concentrations in rime and snow were measured at 10 Czech plots situated in borderline mountains in 2009-2011 winters. The results were put in context with data-driven geostatistical modelling results of annual wet vertical and horizontal deposition. Our hypotheses were that: (i) rime and snow would be more polluted in the highly industrialized north than in the south, (ii) the N-NO3- concentrations would differ in the three winters studied, and (iii), that N-NO3- rime deposition is not negligible in Central European mountain ranges. Our results indicated that winter N-NO3- concentrations were significantly higher in rime than in snow and that there were much larger between-site differences in N-NO3- concentrations for rime than for snow. Relatively large differences were found between individual years. Atmospheric input of N-NO3- in winter was dominated by vertical deposition, i.e., snow. Modelled results showed that mean winter rime deposition corresponded to about 6-25 %, and mean winter snow deposition made up 25-72.5 % of mean annual N-NO3- wet-only deposition. Model N-NO3-occult deposition estimated from throughfall and total (wet and dry) deposition is highly uncertain, however: N throughfall is not a relevant proxy for estimation of realistic total N deposition due to N exchange between the tree canopy and atmosphere.

5.
Environ Sci Technol ; 55(12): 8035-8044, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34042419

RESUMO

In highly industrialized, densely populated parts of Central Europe, mobilization of legacy Zn pollution from forest ecosystems may negatively affect the quality of water resources. To test this hypothesis, we determined the 66Zn/64Zn isotope ratios of 15 Zn reservoirs and fluxes in an acidified, spruce die-back affected mountain-slope catchment in northern Czech Republic. The δ66Zn values of precipitation, organic horizon, and runoff were statistically indistinguishable. In contrast, δ66Zn values of bedrock orthogneiss and mineral soil were significantly different from δ66Zn values of runoff. The magnitude of within-site Zn isotope fractionations appeared to be relatively small. Despite the large potential source of Zn in bedrock, runoff exported mostly young pollutant Zn that had been temporarily stored in the organic horizon. This conclusion was corroborated by comparing Zn input-output mass balances in the polluted northern catchment and in a relatively unpolluted catchment situated 250 km to the south. Seven-times higher Zn export via runoff at the northern site was controlled by a combination of 10-times higher atmospheric Zn input and five-times higher DOC leaching, compared to the southern site. In industrial areas, atmospherically deposited Zn is leached from headwater catchments in a direct analogy to leaching of highly toxic pollutant Pb.


Assuntos
Poluentes Ambientais , Zinco , República Tcheca , Ecossistema , Monitoramento Ambiental , Europa (Continente) , Solo
6.
Environ Sci Pollut Res Int ; 28(13): 16107-16121, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33247400

RESUMO

Arsenic (As) concentrations and deposition fluxes were measured in snow and rime at 10 mountain-top sites near the borders between the Czech Republic and Austria, Germany, Poland, and Slovakia during three consecutive winter seasons (2009-2011). Our study was performed at a time following several decades of sharply decreasing regional atmospheric pollution and following the 2006 implementation of stricter air quality standards across Europe. Our objective was to compare vertical and horizontal depositions of soluble and insoluble As forms throughout the Czech Republic and define a recent Central European As pollution gradient. Arsenic soluble in weak nitric acid contributed 83 to 85% to the total As deposition, with the remaining 17-15% bound to stable particulate forms. The highest As deposition rates were recorded in the eastern Czech Republic near the borders with Poland and Slovakia. Complementary hydrochemical monitoring in four mountain-slope catchments situated near selected main study sites revealed a further decrease in open-area As deposition by the end of 2018 in the east of the country. In contrast, spruce canopy throughfall flux did not change significantly between 2009-2011 and 2016-2018. The site-specific relative roles of coal-burning-derived and ore-smelting-derived atmospheric As are discussed.


Assuntos
Poluentes Atmosféricos , Arsênio , Poluentes Atmosféricos/análise , Arsênio/análise , Áustria , República Tcheca , Ecossistema , Monitoramento Ambiental , Europa (Continente) , Florestas , Alemanha , Polônia , Estações do Ano , Eslováquia
7.
PLoS One ; 15(11): e0242915, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33253305

RESUMO

Magnesium isotope ratios (26Mg/24Mg) can provide insights into the origin of Mg pools and fluxes in catchments where Mg sources have distinct isotope compositions, and the direction and magnitude of Mg isotope fractionations are known. Variability in Mg isotope compositions was investigated in three small, spruce-forested catchments in the Czech Republic (Central Europe) situated along an industrial pollution gradient. The following combinations of catchment characteristics were selected for the study: low-Mg bedrock + low Mg deposition (site LYS, underlain by leucogranite); high-Mg bedrock + low Mg deposition (site PLB, underlain by serpentinite), and low-Mg bedrock + high Mg deposition (site UDL, underlain by orthogneiss). UDL, affected by spruce die-back due to acid rain, was the only investigated site where dolomite was applied to mitigate forest decline. The δ26Mg values of 10 catchment compartments were determined on pooled subsamples. At LYS, a wide range of δ26Mg values was observed across the compartments, from -3.38 ‰ (bedrock) to -2.88 ‰ (soil), -1.48% (open-area precipitation), -1.34 ‰ (throughfall), -1.19 ‰ (soil water), -0.99 ‰ (xylem), -0.95 ‰ (needles), -0.82 ‰ (bark), -0.76 ‰ (fine roots), and -0.76 ‰ (runoff). The δ26Mg values at UDL spanned 1.32 ‰ and were thus less variable, compared to LYS. Magnesium at PLB was isotopically relatively homogeneous. The δ26Mg systematics was consistent with geogenic control of runoff Mg at PLB. Mainly atmospheric/biological control of runoff Mg was indicated at UDL, and possibly also at LYS. Our sites did not exhibit the combination of low-δ26Mg runoff and high-δ26Mg weathering products (secondary clay minerals) reported from several previously studied sites. Six years after the end of liming at UDL, Mg derived from dolomite was isotopically undetectable in runoff.


Assuntos
Monitoramento Ambiental , Magnésio/isolamento & purificação , Poluentes do Solo/isolamento & purificação , Chuva Ácida , Carbonato de Cálcio/química , República Tcheca/epidemiologia , Poluição Ambiental/prevenção & controle , Europa (Continente) , Humanos , Isótopos/química , Magnésio/química , Solo/química , Poluentes do Solo/química , Árvores/química , Poluentes Químicos da Água/química
8.
Environ Pollut ; 265(Pt B): 114949, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32563118

RESUMO

Cadmium (Cd) and its forms has recently been a focus of attention due to its toxic effects on human health and the environment. We evaluated the atmospheric deposition of Cd during three consecutive winter seasons (2009-2011) at 10 mountain-top locations in the Czech Republic along the borders with Poland, Germany, Austria and Slovakia. Cadmium concentrations of soluble and insoluble forms in both horizontal (rime) and vertical (snow) deposition were determined using sector-field ICP-MS. Across the sites, 94% of the total winter Cd deposition occurred in the soluble (environmentally available) Cd form. Mean concentrations of soluble Cd in rime were six times higher than in snow (398 vs. 66 ng L-1). Vertical deposition contributed as much as 41% to the total winter Cd input. Between-site variability in Cd deposition was large, ranging between 13 and 108 µg m-2 winter-1. Overall, Cd concentrations in winter deposition did not reach the drinking water limits and did not pose a direct threat for human health. Long-term trends (1996-2017) in winter Cd deposition were evaluated at six GEOMON sites (a monitoring network of small forested catchments). Since 1996, Cd input in winter atmospheric deposition decreased by 73-93%. Simultaneously, we found declines in between-site variability in winter Cd inputs. The highest recent winter Cd inputs were found at sites located in the northeast of the country. A north-south pollution gradient, which has frequently been mentioned in the literature, was not observed, with both northwestern sites and southern sites being among those with the lowest Cd pollution. Backward trajectories of the HYSPLIT model for fresh snow samples identified Poland and Germany as major transboundary Cd pollution sources for the Czech Republic.


Assuntos
Cádmio , Monitoramento Ambiental , Áustria , República Tcheca , Europa (Continente) , Alemanha , Humanos , Polônia , Estações do Ano , Eslováquia
9.
Glob Chang Biol ; 25(4): 1547, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30375707

RESUMO

"Comparison of nitrogen inputs and accumulation in 210 Pb-dated peat cores: Evidence for biological N2 -fixation in Central European peatlands despite decades of atmospheric N pollution" https://doi.org/10.1111/gcb.14505, by Martin Novak, Melanie A. Vile, Jan Curik, Bohuslava Cejkova, Jiri Barta, Marketa Stepanova, Ivana Jackova, Frantisek Buzek, Leona Bohdalkova, Eva Prechova, Frantisek Veselovsky, Marie Adamova, Ivana Valkova and Arnost Komarek. The above article, first published online in Wiley Online Library (wileyonlinelibrary.com) in Global Change Biology, has been retracted by agreement between the authors, the journal Editor-in-Chief, Stephen P. Long, and John Wiley & Sons Ltd. Since publication of the above article, it was brought to the attention of the authors that the peat accretion rates violate reasonable ranges of peatland C/N/P stoichiometry, placing the quantitative conclusions of the article in serious error. The authors apologize for any inconvenience the publication of this work may have caused our readers. REFERENCE Novak, M., Vile, M. A., Cejkova, B., Barta, J., Stepanova, M., Jackova, I., Buzek, F., Bohdalkova, L., Prechova, E., Veselovsky, F., Adamova, M., Valkova, I., & Komarek, A. (2018). Comparison of nitrogen inputs and accumulation in 210 Pb-dated peat cores: Evidence for biological N2 -fixation in Central European peatlands despite decades of atmospheric N pollution. Global Change Biology.. https://doi.org/10.1111/gcb.14505.

10.
Environ Sci Pollut Res Int ; 25(29): 28961-28972, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30109679

RESUMO

The impact of a natural wetland ("dambo" in Zambia) on neutral mine drainage at Luanshya in the Zambian Copperbelt has been investigated during an intermediate discharge period (July) using a multi-method characterization of solid phase samples, sequential extraction analysis, X-ray diffraction, Mössbauer spectroscopy, and scanning electron microscopy combined with water analyses, isotopic analyses, and geochemical modeling. In the wetland, the principal identified solid phases in sediments were carbonates, gypsum, and ferric oxyhydroxides. A significant portion of the ochres was present as insoluble hematite. Mine drainage pH values decrease, and log [Formula: see text] values increase after inflow of water into the wetland; dissolved and suspended concentrations of Fe, Mn, Cu, and Co also decrease. Based on speciation calculations, there is no precipitation of secondary Cu and Co minerals in the period of sampling, but it can occur later in dry period when the flow rate is reduced. Concentrations of sulfate decrease, and values of δ34S(SO4) in the wetland increase in parallel, suggesting sulfate reduction is occurring. In more advanced dry period, the discharge in mine drainage stream is probably much lower and water can reach supersaturation with respect to minerals such as gypsum, which has been found in sediments. Wetlands have a positive impact on mine drainage water quality due to the removal of metals by adsorption, co-precipitation, and filtration of colloids. However, there can also be a rebound of contamination by seepage inflow downstream from the wetland. Ongoing climate change with extreme hydrologic events may enhance differences between dry and rainy seasons with resulting faster mobilization of contaminants.


Assuntos
Mudança Climática , Monitoramento Ambiental , Metais Pesados/análise , Minerais/química , Mineração , Águas Residuárias/química , Áreas Alagadas , Adsorção , Sulfato de Cálcio/química , Carbonatos/química , Precipitação Química , Coloides , Monitoramento Ambiental/métodos , Compostos Férricos , Filtração , Estações do Ano , Sulfatos/análise , Poluentes Químicos da Água/análise , Tempo (Meteorologia) , Difração de Raios X , Zâmbia
11.
Environ Pollut ; 218: 1135-1146, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27613315

RESUMO

Copper (Cu) and zinc (Zn) isotope ratios can be used to fingerprint sources and dispersion pathways of pollutants in the environment. Little is known, however, about the potential of δ65Cu and δ66Zn values in liquid and solid forms of atmospheric deposition to distinguish between geogenic, industrial, local and remote sources of these potentially toxic base metals. Here we present Cu-Zn deposition fluxes at 10 mountain-top sites in the Czech Republic, a region affected by extremely high industrial emission rates 25 years ago. Additionally, we monitored isotope composition of Cu and Zn in vertical and horizontal atmospheric deposition at two sites. We compared δ65Cu and δ66Zn values in snow and rime, extracted by diluted HNO3 and concentrated HF. Cu and Zn isotope signatures of industrial pollution sources were also determined. Cu and Zn deposition fluxes at all study sites were minute. The mean δ65Cu value of atmospheric deposition (-0.07‰) was higher than the mean δ65Cu value of pollution sources (-1.17‰). The variability in δ65Cu values of atmospheric deposition was lower, compared to the pollution sources. The mean δ66Zn value of atmospheric deposition (-0.09‰) was slightly higher than the mean δ66Zn value of pollution sources (-0.23‰). The variability in δ66Zn values of atmospheric deposition was indistinguishable from that of pollution sources. The largest isotope differences (0.35‰) were observed between the insoluble and soluble fractions of atmospheric deposition. These differences may result from different sources of Cu/Zn for each fraction. The difference in isotope composition of soluble and insoluble particles appears to be a promising tool for pollution provenance studies in Central Europe.


Assuntos
Poluição do Ar , Cobre , Neve/química , Zinco , Cobre/análise , Cobre/química , República Tcheca , Monitoramento Ambiental , Europa (Continente) , Gelo , Isótopos/análise , Zinco/análise , Zinco/química
12.
Sci Total Environ ; 563-564: 329-39, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27139305

RESUMO

We studied the heavy mineral fraction, separated from mining- and smelter-affected topsoils, from both a humid subtropical area (Mufulira, Zambian Copperbelt) and a hot semi-arid area (Tsumeb, Namibia). High concentrations of metal(loid)s were detected in the studied soils: up to 1450mgAskg(-1), 8980mgCukg(-1), 4640mgPbkg(-1), 2620mgZnkg(-1). A combination of X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS), and electron probe microanalysis (EPMA) helped to identify the phases forming individual metal(loid)-bearing particles. Whereas spherical particles originate from the smelting and flue gas cleaning processes, angular particles have either geogenic origins or they are windblown from the mining operations and mine waste disposal sites. Sulphides from ores and mine tailings often exhibit weathering rims in contrast to smelter-derived high-temperature sulphides (chalcocite [Cu2S], digenite [Cu9S5], covellite [CuS], non-stoichiometric quenched Cu-Fe-S phases). Soils from humid subtropical areas exhibit higher available concentrations of metal(loids), and higher frequencies of weathering features (especially for copper-bearing oxides such as delafossite [Cu(1+)Fe(3+)O2]) are observed. In contrast, metal(loid)s are efficiently retained in semi-arid soils, where a high proportion of non-weathered smelter slag particles and low-solubility Ca-Cu-Pb arsenates occur. Our results indicate that compared to semi-arid areas (where inorganic contaminants were rather immobile in soils despite their high concentrations) a higher potential risk exists for agriculture in mine- and smelter-affected humid subtropical areas (where metal(loid) contaminants can be highly available for the uptake by crops).

13.
Sci Total Environ ; 557-558: 192-203, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-26994806

RESUMO

The mineralogical composition of mining wastes deposited in countless dumps around the world is the key factor that controls retention and release of pollutants. Here we report a multi-method data set combining mineralogical (X-ray diffraction, electron microprobe and Raman microspectrometry) and geochemical (sequential extraction and pore water analysis) methods to resolve As mobility in two 50-years-old mining waste dumps. Originally, all of the As in the mining wastes selected for the study was present as arsenopyrite and with time it has been replaced by secondary As phases. At Jedová jáma mining area, the most of As precipitated as X-ray amorphous ferric arsenate (HFA). Arsenic is also accumulated in the scorodite and Fe (hydr)oxide (with up to 3.2wt.% As2O5) that is particularly represented by hematite. Mining wastes at Dlouhá Ves contain only trace amount of scorodite. Arsenic is primarily bound to Pb-jarosite and Fe (hydr)oxides (especially goethite) with up to 1.6 and 1.8wt.% As2O5, respectively. The pore water collected after rainfall events indicated high concentrations of As (~4600µg·L(-1)) at Jedová jáma, whereas aqueous As at Dlouhá Ves was negligible (up to 1.5µg·L(-1)). Highly mobile As at Jedová jáma is attributed to the dissolution of HFA and simultaneous precipitation of Fe (hydr)oxides under mildly acidic conditions (pH~4.4); immobile As at Dlouhá Ves is due to the efficient adsorption on the Fe (hydr)oxides and hydroxosulfates under acidic pH of ~2.8. Taken together, As mobility in the ferric arsenates-containing mining wastes may significantly vary. These wastes must be kept under acidic conditions or with high aqueous Fe(III) concentrations to prevent the release of As from incongruent dissolution of ferric arsenates.

14.
Environ Geochem Health ; 36(5): 919-33, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24729052

RESUMO

Metal smelting is often responsible for local contamination of environmental compartments. Dust materials escaping from the smelting facilities not only settle in the soil, but can also have direct effects on populations living close to these operations (by ingestion or inhalation). In this particular study, we investigate dusts from Cu-Co metal smelters in the Zambian Copperbelt, using a combination of mineralogical techniques (XRD, SEM/EDS, and TEM/EDS), in order to understand the solid speciation of the contaminants, as well as their bioaccessibility using in vitro tests in simulated gastric and lung fluids to assess the exposure risk for humans. The leaching of metals was mainly dependent on the contaminant mineralogy. Based on our results, a potential risk can be recognized, particularly from ingestion of the dust, with bioaccessible fractions ranging from 21 to 89% of the total contaminant concentrations. In contrast, relatively low bioaccessible fractions were observed for simulated lung fluid extracts, with values ranging from 0.01% (Pb) up to 16.5% (Co) of total contaminant concentrations. Daily intakes via oral exposure, calculated for an adult (70 kg, ingestion rate 50 mg dust per day), slightly exceeded the tolerable daily intake limits for Co (1.66× for fly ash and 1.19× for slag dust) and occasionally also for Pb (1.49×, fly ash) and As (1.64×, electrostatic precipitator dust). Cobalt has been suggested as the most important pollutant, and the direct pathways of the population's exposures to dust particles in the industrial parts of the Zambian Copperbelt should be further studied in interdisciplinary investigations.


Assuntos
Poluentes Atmosféricos/análise , Poeira/análise , Monitoramento Ambiental , Metalurgia , Metais Pesados/análise , Adulto , Arsênio/análise , Humanos , Técnicas In Vitro , Indústrias , Modelos Biológicos , Tamanho da Partícula , Medição de Risco , Zâmbia
15.
Sci Total Environ ; 473-474: 117-24, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24365587

RESUMO

Six soil profiles located near Mufulira (Zambian Copperbelt) were studied to evaluate and compare the extent of environmental pollution of Cu-ore mining and smelting in both forested and grassland areas. The highest metal concentrations were detected in the uppermost soil layers with the following maxima: Co 45.8 mg kg(-1), Cu 8,980 mg kg(-1), Pb 41.6 mg kg(-1), and Zn 97.0 mg kg(-1). Numerous anthropogenic metal-bearing particles were detected in the most polluted soil layers. The spherical smelter-derived particles were mainly composed of covellite (CuS) and chalcocite (Cu2S), while the angular mining-derived particles were mostly composed of chalcopyrite (CuFeS2). Additionally, Fe-Cu oxide particles predominantly corresponding to tenorite (CuO) and delafossite (Cu(1+)Fe(3+)O2), along with hydrated Fe-oxides corresponding to secondary weathering products, were detected. In contrast to smelter-affected soils in temperate climates, where forest soils are significantly more enriched in metals than tilled soils due to high canopy interception, our data indicate a higher proportion of metal-bearing anthropogenic particles and higher metal concentrations in soils from unforested sites. This phenomenon is probably related to the more frequent and intense bushfires in forested areas, leading to the mobilization of pollutants contained in the biomass-rich surface soils back into the atmosphere.


Assuntos
Monitoramento Ambiental , Metais/análise , Mineração , Poluentes do Solo/análise , Meio Ambiente , Poluição Ambiental/estatística & dados numéricos , Solo/química , Árvores , Zâmbia
16.
Sci Total Environ ; 439: 26-34, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23063635

RESUMO

Little is known about atmospheric input of beryllium (Be) into ecosystems, despite its highly toxic behavior. For three consecutive winters (2009-2011), we measured Be concentrations in horizontal deposition (rime) and vertical deposition (snow) at 10 remote mountain-top locations in the Czech Republic, Central Europe. Beryllium was determined both in filtered waters, and in HF digests of insoluble particles. Across the sites, soluble Be concentrations in rime were 7 times higher, compared to snow (6.1 vs. 0.9ng·L(-1)). Rime scavenged the pollution-rich lower segments of clouds. The lowest Be concentrations were detected in the soluble fraction of snow. Across the sites, 34% of total Be deposition occurred in the form of soluble (bioavailable) Be, the rest were insoluble particles. Beryllium fluxes decreased in the order: vertical dry deposition insoluble>vertical dry deposition soluble>horizontal deposition soluble>vertical wet deposition insoluble>vertical wet deposition soluble>horizontal deposition insoluble. The average contributions of these Be forms to total deposition were 56, 21, 8, 7, 5 and 3%, respectively. Sites in the northeast were more Be-polluted than the rest of the country with sources of pollution in industrial Silesia.


Assuntos
Poluentes Atmosféricos/análise , Ar , Berílio/análise , Monitoramento Ambiental/métodos , Gelo/análise , Neve/química , Ar/análise , Ar/normas , Europa (Continente)
17.
Environ Monit Assess ; 172(1-4): 287-99, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20140501

RESUMO

Behaviour of metals like Cu and Co was studied in nearly neutral (pH ≥ 6.4) mine drainage seepage in a stream downgradient of a tailing dam at Chambishi site in the Copperbelt of Zambia. They are attenuated by precipitation of ferruginous ochres that incorporate significant quantities of metals. Using chemical analysis, X-ray powder diffraction and Mössbauer spectroscopy, we show that the ochres are composed mostly of amorphous ferric hydroxide. Close to the seepage face, the total Fe content of ochres increases due to precipitation of amorphous ferric hydroxide, but total Fe in sediment decreases further downstream. The stream then flows through wetland (dambo) where the remaining fraction of metals is removed. During rainy periods, increased flow rate may result in re-suspension of ochres, increasing thus the mobility of metals. Major ions like sulphate are conservative at the start of the dry period (May), but gypsum may probably precipitate later at the end of the dry period. Sequential extractions of bulk sediments indicate that Mn behaves differently to Fe, with a trend of increasing Mn with distance from the tailing dam. There is much more Fe than Mn in residual (Aqua Regia) fraction, indicating that amorphous ferric hydroxides are transformed to more crystalline phases deeper in sediment. Environmental impact of mine drainage is relatively limited due to its neutral character.


Assuntos
Metais/análise , Mineração , Monitoramento Ambiental , Compostos Férricos/análise , Difração de Raios X , Zâmbia
18.
Sci Total Environ ; 408(17): 3614-22, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20494405

RESUMO

The 40-year long period of heavy industrialization in Central Europe (1950-1990) was accompanied by burning of arsenic-rich lignite in thermal power plants, and accumulation of anthropogenic arsenic in forest soils. There are fears that retreating acidification may lead to arsenic mobilization into drinking water, caused by competitive ligand exchange. We present monthly arsenic concentrations in surface runoff from 12 headwater catchments in the Czech Republic for a period of 13 years (1996-2008). The studied area was characterized by a north-south gradient of decreasing pollution. Acidification, caused mainly by SOx and NOx emissions from power plants, has been retreating since 1987. Between 1996 and 2003, maximum arsenic concentrations in runoff did not change, and were < 1 ppb in the rural south and < 2 ppb in the industrial north. During the subsequent two years, 2004-2005, maximum arsenic concentrations in runoff increased, reaching 60% of the drinking water limit (10 ppb). Starting in 2006, maximum arsenic concentrations returned to lower values at most sites. We discuss three possible causes of the recent arsenic concentration maximum in runoff. We rule out retreating acidification and a pulse of high industrial emission rates as possible controls. The pH of runoff has not changed since 1996, and is still too low (<6.5) at most sites for an As-OH(-) ligand exchange to become significant. Elevated arsenic concentrations in runoff in 2004-2005 may reflect climate change through changing hydrological conditions at some, but not all sites. Dry conditions may result in elevated production of DOC and sulfur oxidation in the soil. Subsequent wet conditions may be accompanied by acidification leading to faster dissolution of arsenic-bearing sulfides, dissolution of arsenic-bearing Fe-oxyhydroxides, and elevated transport of arsenic sorbed on organic matter. Anaerobic domains exist in normally well-aerated upland soils for hours-to-days following precipitation events.


Assuntos
Arsênio/análise , Monitoramento Ambiental , Água Doce/química , Árvores , Poluentes Químicos da Água/análise , República Tcheca , Gelo , Neve/química , Poluentes do Solo/análise , Poluição Química da Água/prevenção & controle , Poluição Química da Água/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA