Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 17(8): e3000356, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31469824

RESUMO

Natural microbial communities perform many functions that are crucial for human well-being. Yet we have very little control over them, and we do not know how to optimize their functioning. One idea is to breed microbial communities as we breed dogs: by comparing a set of microbiomes and allowing the best-performing ones to generate new communities, and so on. Although this idea seems simple, designing such a selection experiment brings with it many decisions with surprising outcomes. Xie and colleagues developed a computational model that reveals this complexity and shows how different experimental design decisions can impact the success of such an experiment.


Assuntos
Microbiota , Animais , Cruzamento , Cães , Humanos
2.
Proc Natl Acad Sci U S A ; 116(32): 15979-15984, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31270235

RESUMO

Competition between microbes is extremely common, with many investing in mechanisms to harm other strains and species. Yet positive interactions between species have also been documented. What makes species help or harm each other is currently unclear. Here, we studied the interactions between 4 bacterial species capable of degrading metal working fluids (MWF), an industrial coolant and lubricant, which contains growth substrates as well as toxic biocides. We were surprised to find only positive or neutral interactions between the 4 species. Using mathematical modeling and further experiments, we show that positive interactions in this community were likely due to the toxicity of MWF, whereby each species' detoxification benefited the others by facilitating their survival, such that they could grow and degrade MWF better when together. The addition of nutrients, the reduction of toxicity, or the addition of more species instead resulted in competitive behavior. Our work provides support to the stress gradient hypothesis by showing how harsh, toxic environments can strongly favor facilitation between microbial species and mask underlying competitive interactions.


Assuntos
Bactérias/metabolismo , Poluentes Ambientais/toxicidade , Bactérias/classificação , Metais/metabolismo , Modelos Biológicos , Especificidade da Espécie
3.
J Theor Biol ; 408: 13-21, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27484301

RESUMO

The dynamics of many microbial ecosystems are driven by cross-feeding interactions, in which metabolites excreted by some species are metabolised further by others. The population dynamics of such ecosystems are governed by frequency-dependent selection, which allows for stable coexistence of two or more species. We have analysed a model of cross-feeding based on the replicator equation, with the aim of establishing criteria for coexistence in ecosystems containing three species, given the information of the three species' ability to coexist in their three separate pairs, i.e. the long term dynamics in the three two-species component systems. The triple-system is studied statistically and the probability of coexistence in the species triplet is computed for two models of species interactions. The interaction parameters are modelled either as stochastically independent or organised in a hierarchy where any derived metabolite carries less energy than previous nutrients in the metabolic chain. We differentiate between different modes of coexistence with respect to the pair-wise dynamics of the species, and find that the probability of coexistence is close to 12 for triplet systems with three pair-wise coexistent pairs and for the so-called intransitive systems. Systems with two and one pair-wise coexistent pairs are more likely to exist for random interaction parameters, but are on the other hand much less likely to exhibit triplet coexistence. Hence we conclude that certain species triplets are, from a statistical point of view, rare, but if allowed to interact are likely to coexist. This knowledge might be helpful when constructing synthetic microbial communities for industrial purposes.


Assuntos
Ecossistema , Metaboloma , Modelos Biológicos , Dinâmica Populacional , Animais , Biometria , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA