Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nat Biotechnol ; 40(3): 382-390, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34663920

RESUMO

Phosphorylation is a critical post-translational modification involved in the regulation of almost all cellular processes. However, fewer than 5% of thousands of recently discovered phosphosites have been functionally annotated. In this study, we devised a chemical genetic approach to study the functional relevance of phosphosites in Saccharomyces cerevisiae. We generated 474 yeast strains with mutations in specific phosphosites that were screened for fitness in 102 conditions, along with a gene deletion library. Of these phosphosites, 42% exhibited growth phenotypes, suggesting that these are more likely functional. We inferred their function based on the similarity of their growth profiles with that of gene deletions and validated a subset by thermal proteome profiling and lipidomics. A high fraction exhibited phenotypes not seen in the corresponding gene deletion, suggestive of a gain-of-function effect. For phosphosites conserved in humans, the severity of the yeast phenotypes is indicative of their human functional relevance. This high-throughput approach allows for functionally characterizing individual phosphosites at scale.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fosforilação , Processamento de Proteína Pós-Traducional/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Cell Host Microbe ; 29(8): 1316-1332.e12, 2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34237247

RESUMO

Intracellular bacterial pathogens inject effector proteins to hijack host cellular processes and promote their survival and proliferation. To systematically map effector-host protein-protein interactions (PPIs) during infection, we generated a library of 32 Salmonella enterica serovar Typhimurium (STm) strains expressing chromosomally encoded affinity-tagged effectors and quantified PPIs in macrophages and epithelial cells. We identified 446 effector-host PPIs, 25 of which were previously described, and validated 13 by reciprocal co-immunoprecipitation. While effectors converged on the same host cellular processes, most had multiple targets, which often differed between cell types. We demonstrate that SseJ, SseL, and SifA modulate cholesterol accumulation at the Salmonella-containing vacuole (SCV) partially via the cholesterol transporter Niemann-Pick C1 protein. PipB recruits the organelle contact site protein PDZD8 to the SCV, and SteC promotes actin bundling by phosphorylating formin-like proteins. This study provides a method for probing host-pathogen PPIs during infection and a resource for interrogating STm effector mechanisms.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Domínios e Motivos de Interação entre Proteínas , Salmonella enterica/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Bactérias , Proteínas de Bactérias/metabolismo , Células Epiteliais/microbiologia , Feminino , Células HeLa , Humanos , Macrófagos/microbiologia , Masculino , Camundongos , Células RAW 264.7 , Salmonella enterica/genética , Salmonella typhimurium/metabolismo
3.
Cell Rep ; 34(2): 108602, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33440154

RESUMO

Protein kinases lie at the heart of cell-signaling processes and are often mutated in disease. Kinase target recognition at the active site is in part determined by a few amino acids around the phosphoacceptor residue. However, relatively little is known about how most preferences are encoded in the kinase sequence or how these preferences evolved. Here, we used alignment-based approaches to predict 30 specificity-determining residues (SDRs) for 16 preferences. These were studied with structural models and were validated by activity assays of mutant kinases. Cancer mutation data revealed that kinase SDRs are mutated more frequently than catalytic residues. We have observed that, throughout evolution, kinase specificity has been strongly conserved across orthologs but can diverge after gene duplication, as illustrated by the G protein-coupled receptor kinase family. The identified SDRs can be used to predict kinase specificity from sequence and aid in the interpretation of evolutionary or disease-related genomic variants.


Assuntos
Eucariotos/metabolismo , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional/genética , Animais , Humanos , Camundongos , Modelos Moleculares , Fosforilação , Transdução de Sinais
4.
Nucleic Acids Res ; 48(7): 3455-3475, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32064518

RESUMO

Cells have the ability to sense, respond and adapt to environmental fluctuations. Stress causes a massive reorganization of the transcriptional program. Many examples of histone post-translational modifications (PTMs) have been associated with transcriptional activation or repression under steady-state growth conditions. Comparatively less is known about the role of histone PTMs in the cellular adaptive response to stress. Here, we performed high-throughput genetic screenings that provide a novel global map of the histone residues required for transcriptional reprogramming in response to heat and osmotic stress. Of note, we observed that the histone residues needed depend on the type of gene and/or stress, thereby suggesting a 'personalized', rather than general, subset of histone requirements for each chromatin context. In addition, we identified a number of new residues that unexpectedly serve to regulate transcription. As a proof of concept, we characterized the function of the histone residues H4-S47 and H4-T30 in response to osmotic and heat stress, respectively. Our results uncover novel roles for the kinases Cla4 and Ste20, yeast homologs of the mammalian PAK2 family, and the Ste11 MAPK as regulators of H4-S47 and H4-T30, respectively. This study provides new insights into the role of histone residues in transcriptional regulation under stress conditions.


Assuntos
Regulação Fúngica da Expressão Gênica , Código das Histonas , Histonas/química , Saccharomyces cerevisiae/genética , Estresse Fisiológico/genética , Transcrição Gênica , Resposta ao Choque Térmico/genética , Histonas/genética , Histonas/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Mutação , Nucleossomos/metabolismo , Pressão Osmótica , Fosforilação , Regiões Promotoras Genéticas , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ativação Transcricional
5.
Nat Biotechnol ; 38(3): 365-373, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31819260

RESUMO

Protein phosphorylation is a key post-translational modification regulating protein function in almost all cellular processes. Although tens of thousands of phosphorylation sites have been identified in human cells, approaches to determine the functional importance of each phosphosite are lacking. Here, we manually curated 112 datasets of phospho-enriched proteins, generated from 104 different human cell types or tissues. We re-analyzed the 6,801 proteomics experiments that passed our quality control criteria, creating a reference phosphoproteome containing 119,809 human phosphosites. To prioritize functional sites, we used machine learning to identify 59 features indicative of proteomic, structural, regulatory or evolutionary relevance and integrate them into a single functional score. Our approach identifies regulatory phosphosites across different molecular mechanisms, processes and diseases, and reveals genetic susceptibilities at a genomic scale. Several regulatory phosphosites were experimentally validated, including identifying a role in neuronal differentiation for phosphosites in SMARCC2, a member of the SWI/SNF chromatin-remodeling complex.


Assuntos
Biologia Computacional/métodos , Proteínas de Ligação a DNA/química , Fosfoproteínas/metabolismo , Proteômica/métodos , Fatores de Transcrição/química , Sítios de Ligação , Linhagem Celular , Curadoria de Dados , Bases de Dados de Proteínas , Células HeLa , Humanos , Aprendizado de Máquina , Espectrometria de Massas , Neurogênese , Fosfoproteínas/química , Processamento de Proteína Pós-Traducional
6.
Mol Syst Biol ; 15(12): e8831, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31885205

RESUMO

Loss-of-function (LoF) mutations associated with disease do not manifest equally in different individuals. The impact of the genetic background on the consequences of LoF mutations remains poorly characterized. Here, we systematically assessed the changes in gene deletion phenotypes for 3,786 gene knockouts in four Saccharomyces cerevisiae strains and 38 conditions. We observed 18.5% of deletion phenotypes changing between pairs of strains on average with a small fraction conserved in all four strains. Conditions causing higher wild-type growth differences and the deletion of pleiotropic genes showed above-average changes in phenotypes. In addition, we performed a genome-wide association study (GWAS) for growth under the same conditions for a panel of 925 yeast isolates. Gene-condition associations derived from GWAS were not enriched for genes with deletion phenotypes under the same conditions. However, cases where the results were congruent indicate the most likely mechanism underlying the GWAS signal. Overall, these results show a high degree of genetic background dependencies for LoF phenotypes.


Assuntos
Deleção de Genes , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Técnicas de Inativação de Genes , Genótipo , Mutação com Perda de Função , Fenótipo , Saccharomyces cerevisiae/genética
7.
Nat Commun ; 10(1): 1977, 2019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31036831

RESUMO

Protein phosphorylation is the best characterized post-translational modification that regulates almost all cellular processes through diverse mechanisms such as changing protein conformations, interactions, and localization. While the inventory for phosphorylation sites across different species has rapidly expanded, their functional role remains poorly investigated. Here, we combine 537,321 phosphosites from 40 eukaryotic species to identify highly conserved phosphorylation hotspot regions within domain families. Mapping these regions onto structural data reveals that they are often found at interfaces, near catalytic residues and tend to harbor functionally important phosphosites. Notably, functional studies of a phospho-deficient mutant in the C-terminal hotspot region within the ribosomal S11 domain in the yeast ribosomal protein uS11 shows impaired growth and defective cytoplasmic 20S pre-rRNA processing at 16 °C and 20 °C. Altogether, our study identifies phosphorylation hotspots for 162 protein domains suggestive of an ancient role for the control of diverse eukaryotic domain families.


Assuntos
Células Eucarióticas/metabolismo , Proteínas Fúngicas/metabolismo , Fosforilação , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo
8.
Science ; 354(6309): 229-232, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27738172

RESUMO

Living organisms have evolved protein phosphorylation, a rapid and versatile mechanism that drives signaling and regulates protein function. We report the phosphoproteomes of 18 fungal species and a phylogenetic-based approach to study phosphosite evolution. We observe rapid divergence, with only a small fraction of phosphosites conserved over hundreds of millions of years. Relative to recently acquired phosphosites, ancient sites are enriched at protein interfaces and are more likely to be functionally important, as we show for sites on H2A1 and eIF4E. We also observe a change in phosphorylation motif frequencies and kinase activities that coincides with the whole-genome duplication event. Our results provide an evolutionary history for phosphosites and suggest that rapid evolution of phosphorylation can contribute strongly to phenotypic diversity.


Assuntos
Evolução Molecular , Proteínas Fúngicas/metabolismo , Fungos/metabolismo , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Fungos/genética , Genoma Fúngico , Genômica , Fenótipo , Fosfoproteínas/classificação , Fosfoproteínas/genética , Fosforilação/genética , Filogenia , Proteínas Serina-Treonina Quinases/classificação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteoma/genética , Proteoma/metabolismo , Transdução de Sinais
9.
PLoS One ; 7(9): e45227, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028862

RESUMO

Neuron-microglia co-cultures treated with pro-inflammatory agents are a useful tool to study neuroinflammation in vitro, where to test the potential neuroprotective effect of anti-inflammatory compounds. However, a great diversity of experimental conditions can be found in the literature, making difficult to select the working conditions when considering this approach for the first time. We compared the use of neuron-primary microglia and neuron-BV2 cells (a microglial cell line) co-cultures, using different neuron:microglia ratios, treatments and time post-treatment to induce glial activation and derived neurotoxicity. We show that each model requires different experimental conditions, but that both neuron-BV2 and neuron-primary microglia LPS/IFN-γ-treated co-cultures are good to study the potential neuroprotective effect of anti-inflammatory agents. The contribution of different pro-inflammatory parameters in the neurotoxicity induced by reactive microglial cells was determined. IL-10 pre-treatment completely inhibited LPS/IFN-γ-induced TNF-α and IL-6 release, and COX-2 expression both in BV2 and primary microglial cultures, but not NO production and iNOS expression. However, LPS/IFN-γ induced neurotoxicity was not inhibited in IL-10 pre-treated co-cultures. The inhibition of NO production using the specific iNOS inhibitor 1400 W totally abolished the neurotoxic effect of LPS/IFN-γ, suggesting a major role for NO in the neurotoxic effect of activated microglia. Consequently, among the anti-inflammatory agents, special attention should be paid to compounds that inhibit NO production.


Assuntos
Anti-Inflamatórios/farmacologia , Iminas/farmacologia , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Linhagem Celular , Técnicas de Cocultura , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Interferon gama/farmacologia , Interleucina-10/biossíntese , Interleucina-10/imunologia , Interleucina-6/biossíntese , Interleucina-6/imunologia , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/citologia , Microglia/metabolismo , Modelos Biológicos , Neurônios/citologia , Neurônios/metabolismo , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Cultura Primária de Células
10.
Mol Microbiol ; 76(4): 1049-62, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20398213

RESUMO

To ensure cell survival and growth during temperature increase, eukaryotic organisms respond with transcriptional activation that results in accumulation of proteins that protect against damage and facilitate recovery. To define the global cellular adaptation response to heat stress, we performed a systematic genetic screen that yielded 277 yeast genes required for growth at high temperature. Of these, the Rpd3 histone deacetylase complex was enriched. Global gene expression analysis showed that Rpd3 partially regulated gene expression upon heat shock. The Hsf1 and Msn2/4 transcription factors are the main regulators of gene activation in response to heat stress. RPD3-deficient cells had impaired activation of Msn2/4-dependent genes, while activation of genes controlled by Hsf1 was deacetylase-independent. Rpd3 bound to heat stress-dependent promoters through the Msn2/4 transcription factors, allowing entry of RNA Pol II and activation of transcription upon stress. Finally, we found that the large, but not the small Rpd3 complex regulated cell adaptation in response to heat stress.


Assuntos
Regulação Fúngica da Expressão Gênica , Resposta ao Choque Térmico/genética , Histona Desacetilases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Ativação Transcricional , Proteínas de Ligação a DNA/metabolismo , Redes Reguladoras de Genes , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/enzimologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA