Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(3): 3572-3581, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38085476

RESUMO

Diuron and Irgarol are common antifouling biocides used in paints to prevent the attachment and growth of fouling organisms on ship hulls and other submerged structures. Concerns about their toxicity to non-target aquatic organisms have led to various restrictions on their use in antifouling paints worldwide. Previous studies have shown the widespread presence of these substances in port areas along the Brazilian coast, with a concentration primarily in the southern part of the country. In this study, we conducted six sampling campaigns over the course of 1 year to assess the presence and associated risks of Diuron and Irgarol in water collected from areas under the influence of the Maranhão Port Complex in the Brazilian Northeast. Our results revealed the absence of Irgarol in the study area, irrespective of the sampling season and site. In contrast, the mean concentrations of Diuron varied between 2.0 ng L-1 and 34.1 ng L-1 and were detected at least once at each sampling site. We conducted a risk assessment of Diuron levels in this area using the risk quotient (RQ) method. Our findings indicated that Diuron levels at all sampling sites during at least one campaign yielded an RQ greater than 1, with a maximum of 22.7, classifying the risk as "high" based on the proposed risk classification. This study underscores the continued concern regarding the presence of antifouling biocides in significant ports and marinas in Brazilian ports, despite international bans.


Assuntos
Incrustação Biológica , Desinfetantes , Poluentes Químicos da Água , Diurona/análise , Desinfetantes/análise , Brasil , Estuários , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Triazinas/análise
2.
Sci Total Environ ; 895: 165189, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37391131

RESUMO

Uptake and transformation of arsenic (As) by living organisms can alter its distribution and biogeochemical cycles in the environment. Although well known for its toxicity, several aspects of As accumulation and biological transformation by field species are still little explored. In this study, the bioaccumulation and speciation of As in phytoplankton and zooplankton from five soda lakes in the Brazilian Pantanal wetland were studied. Such lakes exhibited contrasting biogeochemical characteristics along an environmental gradient. Additionally, the influence of contrasting climatic events was assessed by collecting samples during an exceptional drought in 2017 and a flood in 2018. Total As (AsTot) content and speciation were determined using spectrometric techniques, while a suspect screening of organoarsenicals in plankton samples was carried out by high-resolution mass spectrometry. Results showed that AsTot content ranged from 16.9 to 62.0 mg kg-1 during the dry period and from 2.4 to 12.3 mg kg-1 during the wet period. The bioconcentration and bioaccumulation factors (BCF and BAF) in phytoplankton and zooplankton were found to be highly dependent on the lake typology, which is influenced by an ongoing evapoconcentration process in the region. Eutrophic and As-enriched lakes exhibited the lowest BCF and BAF values, possibly due to the formation of non-labile As complexes with organic matter or limited uptake of As by plankton caused by high salinity stress. The season played a decisive role in the results, as significantly higher BCF and BAF values were observed during the flooding event when the concentration of dissolved As in water was low. The diversity of As species was found to be dependent on the lake typology and on the resident biological community, cyanobacteria being responsible for a significant portion of As metabolism. Arsenosugars and their degradation products were detected in both phytoplankton and zooplankton, providing evidence for previously reported detoxification pathways. Although no biomagnification pattern was observed, the diet seemed to be an important exposure pathway for zooplankton.


Assuntos
Arsênio , Plâncton , Animais , Plâncton/química , Lagos/química , Arsênio/metabolismo , Bioacumulação , Salinidade , Zooplâncton/metabolismo , Fitoplâncton/metabolismo
3.
Chemosphere ; 329: 138672, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37060957

RESUMO

The occurrence of high arsenic concentrations (up to 3000 µg L-1) in water of soda lakes of the Pantanal wetland is a remarkable case of natural arsenic contamination in South America. However, little is known about arsenic speciation in this environment, particularly regarding speciation changes related to lake trophic status and seasonal variations. To fill this gap, arsenic speciation analysis was carried out in surface (SW) and subsurface (SSW) waters sampled in five soda lakes with different eutrophication status, in two dry and one wet season. As(V) was the dominant species in these waters, while As(III), DMA, MMA and likely complex organic species were present in lower amounts. The results allow to conclude that the arsenic speciation in SW and SSW varies seasonally according to the regional wet or dry periods and lake water levels. In eutrophic turbid and in oligotrophic vegetated soda lakes, arsenic speciation was also characterized by spatial differences between edge and center or between the SW and SSW. Cyanobacteria or macrophytes/algae are involved in arsenic biotransformation in soda lakes through its metabolic and detoxification processes. Significant variation in surface water arsenic speciation occurs as a result of seasonal primary production fluctuation or water arsenic concentration changes in the soda lakes, increasing organoarsenics in dry periods, whereas in flood periods, As(V) prevails. Spatial distribution of arsenic species is significantly impacted by biogeochemical conditions at the water/sediment interface in soda lakes.


Assuntos
Arsênio , Poluentes Químicos da Água , Arsênio/análise , Lagos/química , Estações do Ano , Poluentes Químicos da Água/análise , Água/análise , Monitoramento Ambiental
4.
Sci Total Environ ; 804: 150113, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34520925

RESUMO

Arsenic (As) is a naturally occurring element in the Earth's crust, exhibiting toxicity towards a wide range of living organisms. Its properties and environmental dynamics are strongly regulated by its speciation, and the species As(III) and As(V) are the most commonly found in environmental systems. Recently, high concentrations of As were found in saline-alkaline lakes of the Pantanal (Brazil), which is the largest wetland area in the world. Therefore, we evaluated As contamination and its redox speciation (As(III) and As(V)) at the soil/water interface of biogeochemically distinct saline-alkaline lakes of Pantanal wetlands (Brazil). Both conventional sampling and in situ diffusive gradients in thin films (DGT) technique were employed. Zirconium oxide and 3-mercaptopropyl were used as ligand phases in DGT to selectively bind As species. High concentrations of total dissolved As in a shallow water table were found (<2337.5 µg L-1), whereas levels in soils were up to 2.4 µg g-1. Distinct scenarios were observed when comparing speciation analysis through spot sampling and DGT. Considering spot sampling, As(V) was the main species detected, whereas As(III) was only detected in only a few samples (<4.2 µg L-1). Conversely, results obtained by DGT showed that labile As(III) dominated arsenic speciation at the soil/water interface with levels up to 203.0 µg L-1. Coupling DGT data and DGT induced fluxes in sediments and soils model allowed obtaining kinetic data, showing that the soil barely participated in the arsenic dynamics on the shore of the lakes, and that this participation depends on the evapoconcentration process occurring in the region. Therefore, soil acts like a nonreactive matrix depending on the natural concentration process. In addition, our results reinforced the different geochemical characteristics of the studied saline-alkaline lakes and highlights the importance of robust passive sampling techniques in the context of metal/metalloid speciation in environmental analysis.


Assuntos
Arsênio , Poluentes Químicos da Água , Arsênio/análise , Brasil , Monitoramento Ambiental , Lagos , Solo , Água , Poluentes Químicos da Água/análise
5.
Talanta ; 226: 122119, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33676674

RESUMO

Chemical speciation is a relevant topic in environmental chemistry since the (eco)toxicity, bio (geo)chemical cycles, and mobility of a given element depend on its chemical forms (oxidation state, organic ligands, etc.). Maintaining the chemical stability of the species and avoiding equilibrium disruptions during the sample treatment is one of the biggest challenges in chemical speciation, especially in environmental matrices where the level of concomitants/interferents is normally high. To achieve this task, strategies based on chemical properties of the species can be carried out and pre-concentration techniques are often needed due to the low concentration ranges of many species (µg L-1 - ng L-1). Due to the significance of the topic and the lack of reviews dealing with sample preparation of metal (loid)s (usually, sample preparation reviews focus on the total metal content), this work is presented. This review gives an up-to-date overview of the most common sample preparation techniques for environmental samples (water, soil, and sediments), with a focus on speciation of metal/metalloids and determination by spectrometric techniques. Description of the methods is given, and the most recent applications (last 10 years) are presented.

7.
Sci Total Environ ; 730: 139026, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32416504

RESUMO

Antifouling biocides, such as irgarol and diuron, are commonly used in antifouling paints. Recently, studies carried out in a Brazilian region of ecological concern have warned for extremely high levels of these biocides. So, this work focused on a 4-year (2015-2018) evaluation considering the occurrence, environmental fate, seasonal variations and ecological risk assessment of irgarol and diuron in water and sediment from São Marcos Bay, Brazil, which is an area of international relevance located in the Amazon region. The results showed the ubiquitous presence of antifouling biocides, as well as their wide distribution along the bay. The concentration range of irgarol was between <0.8 and 89.4 ng L-1 in water and between <0.5 and 9.2 ng g-1dw in sediments, whereas diuron showed a range between <1.4 and 22.0 ng L-1 in water and between <2.0 and 15.0 ng g-1dw in sediments. The distribution of the biocides was mainly related to the intense Bay hydrodynamics. The environmental risk assessment showed that irgarol and diuron posed "high risk" to the aquatic biota of São Marcos Bay, exceeding international Environmental Quality Guidelines. The results represent a robust study on the environmental fate of such biocides and intend to be a useful data source for eventual legislation since regulation concerning antifouling substances is necessary for Brazil.


Assuntos
Desinfetantes/análise , Brasil , Diurona , Monitoramento Ambiental , Medição de Risco , Triazinas , Poluentes Químicos da Água
8.
Environ Pollut ; 255(Pt 1): 112988, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31541816

RESUMO

Fouling organisms attach and grow on submerged surfaces causing several economic losses. Thus, biocides have been introduced in antifouling paints in order to avoid this phenomenon, but their widespread use became a global problem, mainly in ports, leisure and fishing boat harbors, since these substances can be highly toxic to non-target organisms. The occurrence and environmental behavior of antifouling biocides are especially unknown in some peculiar regions, such as Amazon areas. Thus, the aim of this work was to evaluate, for the first time, levels and the partitioning behavior of the antifouling organic biocides irgarol, diuron and also stable degradation products of dichlofluanid and diuron (DMSA and DCPMU, respectively) in sediments and porewaters from a high boat traffic area located in the Northeast of Brazil, a pre-Amazon region. Our results showed high concentrations of irgarol (<1.0-89.7 µg kg-1) and diuron (<5.0-55.2 µg kg-1) in sediments. In porewater, DCPMU (<0.03-0.67 µg L-1) and DMSA (<0.008-0.263 µg L-1) were the mainly substances detected. High Kd and Koc obtained for both irgarol and diuron showed a partitioning preference in the solid phase. This work represents one of the few registers of contamination by antifouling substances in Amazonian areas, despite their environmental relevance.


Assuntos
Desinfetantes/análise , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Água do Mar/química , Poluentes Químicos da Água/análise , Compostos de Anilina/análise , Brasil , Diurona/análise , Pintura/análise , Navios , Triazinas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA