RESUMO
Recent dengue outbreaks have occurred in Ouagadougou and Bobo-Dioulasso, the two major cities of Burkina Faso. Dengue is a viral disease transmitted primarily by Aedes aegypti, a highly anthropophilic mosquito that thrives in human-transformed environments and breeds predominantly in artificial containers. In 2018, we investigated the resting and blood-feeding habits of Ae. aegypti in urban settings of Ouagadougou. In a 3-month cross-sectional study starting in August 2018, indoors and outdoors resting adult mosquitoes were collected using Prokopack aspirators in three health districts (HD). All mosquitoes were morphologically identified, and DNA was extracted from blood-fed Ae. aegypti females. A multiplex polymerase chain reaction with specific primers was used to identify the origin of the blood meal. A total of 4,256 adult Ae. aegypti mosquitoes, including 1,908 females, were collected. A preference for exophily was recorded in Bogodogo and Nongremassom, although an unexpectedly higher proportion of blood-fed females were found indoors than outdoors. Respectively, 96.09%, 91.03%, and 95.54% of the blood meals successfully analyzed in Baskuy, Bogodogo, and Nongremassom were from a single human host, with the remainder from domestic mammals as single or multiple hosts. Modeling total Ae. aegypti and blood-fed female counts showed that among other predictors, human density, outdoor environment, and house type affect their total densities. Our study revealed an exophilic tendency as well as a pronounced anthropophilic preference of Ae. aegypti adults, critical findings to consider when planning accurate entomological surveillance and effective interventions against Ae. aegypti in urban settings.
RESUMO
Resistance to insecticides and adaptation to a diverse range of environments present challenges to Anopheles gambiae s.l. mosquito control efforts in sub-Saharan Africa. Whole-genome-sequencing is often employed for identifying the genomic basis underlying adaptation in Anopheles, but remains expensive for large-scale surveys. Reduced coverage whole-genome-sequencing can identify regions of the genome involved in adaptation at a lower cost, but is currently untested in Anopheles mosquitoes. Here, we use reduced coverage WGS to investigate population genetic structure and identify signatures of local adaptation in Anopheles mosquitoes across southern Ghana. In contrast to previous analyses, we find no structuring by ecoregion, with Anopheles coluzzii and Anopheles gambiae populations largely displaying the hallmarks of large, unstructured populations. However, we find signatures of selection at insecticide resistance loci that appear ubiquitous across ecoregions in An. coluzzii, and strongest in forest ecoregions in An. gambiae. Our study highlights resistance candidate genes in this region, and validates reduced coverage WGS, potentially to very low coverage levels, for population genomics and exploratory surveys for adaptation in Anopheles taxa.
Assuntos
Anopheles , Inseticidas , Piretrinas , Animais , Resistência a Inseticidas/genética , Gana/epidemiologia , Inseticidas/farmacologia , Controle de MosquitosRESUMO
BACKGROUND: Local strains of the entomopathogenic fungus Metarhizium pingshaense in Burkina Faso have demonstrated remarkable virulence against malaria vectors, positioning them as promising candidates for inclusion in the future arsenal of malaria control strategies. However, the underlying mechanisms responsible for this virulence remain unknown. To comprehend the fungal infection process, it is crucial to investigate the attachment mechanisms of fungal spores to the mosquito cuticle and explore the relationship between virulence and attachment kinetics. This study aims to assess the adhesion and virulence properties of native Metarhizium fungal strains from Burkina Faso for controlling malaria vectors. METHODS: Fungal strains were isolated from 201 insects and 1399 rhizosphere samples, and four strains of Metarhizium fungi were selected. Fungal suspensions were used to infect 3-day-old female Anopheles coluzzii mosquitoes at three different concentrations (106, 107, 108 conidia/ml). The survival of the mosquitoes was measured over 14 days, and fungal growth was quantified after 1 and 24 h to assess adhesion of the fungal strains onto the mosquito cuticle. RESULTS: All four fungi strains increased mosquito mortality compared to control (Chi-square test, χ2 = 286.55, df = 4, P < 0.001). Adhesion of the fungal strains was observed on the mosquito cuticle after 24 h at high concentrations (1 × 108 conidia/ml), with one strain, having the highest virulent, showing adhesion after just 1 h. CONCLUSION: The native strains of Metarhizium spp. fungi found in Burkina Faso have the potential to be effective biocontrol agents against malaria vectors, with some strains showing high levels of both virulence and adhesion to the mosquito cuticle.
Assuntos
Anopheles , Malária , Metarhizium , Feminino , Animais , Anopheles/microbiologia , Controle de Mosquitos , Burkina Faso , Virulência , Mosquitos Vetores/microbiologia , Esporos FúngicosRESUMO
Controlling pathogen circulation in wildlife reservoirs is notoriously challenging. In Latin America, vampire bats have been culled for decades in hopes of mitigating lethal rabies infections in humans and livestock. Whether culls reduce or exacerbate rabies transmission remains controversial. Using Bayesian state-space models, we show that a 2-year, spatially extensive bat cull in an area of exceptional rabies incidence in Peru failed to reduce spillover to livestock, despite reducing bat population density. Viral whole genome sequencing and phylogeographic analyses further demonstrated that culling before virus arrival slowed viral spatial spread, but reactive culling accelerated spread, suggesting that culling-induced changes in bat dispersal promoted viral invasions. Our findings question the core assumptions of density-dependent transmission and localized viral maintenance that underlie culling bats as a rabies prevention strategy and provide an epidemiological and evolutionary framework to understand the outcomes of interventions in complex wildlife disease systems.
Assuntos
Quirópteros , Vírus da Raiva , Raiva , Animais , Humanos , Vírus da Raiva/genética , Raiva/epidemiologia , Raiva/prevenção & controle , Teorema de Bayes , Peru/epidemiologia , Gado , Animais SelvagensRESUMO
How malaria mosquitoes persist during the dry season in the Sahel and rapidly rebound at the onset of rains is unclear. Recently, Faiman and colleagues demonstrated that aestivation, a summer dormancy mechanism, is a major persistence strategy of Anopheles mosquitoes, which could be targeted by vector control.
Assuntos
Anopheles , Malária , Animais , Humanos , Mosquitos Vetores , Estações do AnoRESUMO
BACKGROUND: Outbreaks of dengue fever caused by viruses transmitted by Aedes aegypti mosquitoes are repeated occurrences in West Africa. In recent years, Burkina Faso has experienced major dengue outbreaks, most notably in 2016 and 2017 when 80% of cases were recorded in Ouagadougou City (Central Health Region). In order to better understand the ecology of this vector and to provide information for use in developing control measures, a study on the characteristics of Aedes container breeding sites and the productivity of such sites, as measured by the abundance of immature stages and resultant adult body size, was undertaken in three health districts (Baskuy, Bogodogo and Nongremassom) of Ouagadougou. METHODS: Adult mosquitoes were collected indoors and outdoors in 643 households during the rainy season from August to October 2018. The presence of water containers was systematically recorded and the containers examined for the presence or absence of larvae. Characteristics of the container breeding sites, including size of the container and temperature, pH and conductivity of the water contained within, were recorded as well as the volume of water. Traditional Stegomyia indices were calculated as quantitative indicators of the risk of dengue outbreaks; generalised mixed models were fitted to larval and pupal densities, and the contribution of each covariate to the model was evaluated by the Z-value and associated P-value. RESULTS: A total of 1061 container breeding sites were inspected, of which 760 contained immature stages of Ae. aegypti ('positive' containers). The most frequent container breeding sites found in each health district were tyres and both medium (buckets/cans/pots) and large (bins/barrels/drums) containers; these containers were also the most productive larval habitats and the types that most frequently tested positive. Of the Stegomyia indices, the Breteau, House and Container indices exceeded WHO dengue risk thresholds. Generalised linear mixed models showed that larval and pupal abundances were associated with container type, physicochemical characteristics of the water and collection month, but there were significant differences among container types and among health districts. Aedes aegypti body size was positively associated with type and diameter of the container, as well as with electrical conductivity of the water, and negatively associated with pH and temperature of the water and with the level of exposure of the container to sunlight. CONCLUSION: This study provides data on putative determinants of the productivity of habitats regarding Ae. aegypti immature stages. These data are useful to better understand Ae. aegypti proliferation. The results suggest that identifying and targeting the most productive container breeding sites could contribute to dengue vector control strategies in Burkina Faso.
Assuntos
Aedes , Dengue , Animais , Adulto , Humanos , Burkina Faso/epidemiologia , Mosquitos Vetores , Ecossistema , Pupa , Cruzamento , Larva , ÁguaRESUMO
The pathogen transmission dynamics in bat reservoirs underpin efforts to reduce risks to human health and enhance bat conservation, but are notoriously challenging to resolve. For vampire bat rabies, the geographical scale of enzootic cycles, whether environmental factors modulate baseline risk, and how within-host processes affect population-level dynamics remain unresolved. We studied patterns of rabies exposure using an 11-year, spatially replicated sero-survey of 3709 Peruvian vampire bats and co-occurring outbreaks in livestock. Seroprevalence was correlated among nearby sites but fluctuated asynchronously at larger distances. A generalized additive mixed model confirmed spatially compartmentalized transmission cycles, but no effects of bat demography or environmental context on seroprevalence. Among 427 recaptured bats, we observed long-term survival following rabies exposure and antibody waning, supporting hypotheses that immunological mechanisms influence viral maintenance. Finally, seroprevalence in bats was only weakly correlated with outbreaks in livestock, reinforcing the challenge of spillover prediction even with extensive data. Together our results suggest that rabies maintenance requires transmission among multiple, nearby bat colonies which may be facilitated by waning of protective immunity. However, the likelihood of incursions and dynamics of transmission within bat colonies appear largely independent of bat ecology. The implications of these results for spillover anticipation and controlling transmission at the source are discussed.
Assuntos
Quirópteros , Vírus da Raiva , Raiva , Animais , Humanos , Gado , Raiva/epidemiologia , Raiva/veterinária , Estudos SoroepidemiológicosRESUMO
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), humans have been exposed to distinct SARS-CoV-2 antigens, either by infection with different variants, and/or vaccination. Population immunity is thus highly heterogeneous, but the impact of such heterogeneity on the effectiveness and breadth of the antibody-mediated response is unclear. We measured antibody-mediated neutralization responses against SARS-CoV-2Wuhan, SARS-CoV-2α, SARS-CoV-2δ, and SARS-CoV-2ο pseudoviruses using sera from patients with distinct immunological histories, including naive, vaccinated, infected with SARS-CoV-2Wuhan, SARS-CoV-2α, or SARS-CoV-2δ, and vaccinated/infected individuals. We show that the breadth and potency of the antibody-mediated response is influenced by the number, the variant, and the nature (infection or vaccination) of exposures, and that individuals with mixed immunity acquired by vaccination and natural exposure exhibit the broadest and most potent responses. Our results suggest that the interplay between host immunity and SARS-CoV-2 evolution will shape the antigenicity and subsequent transmission dynamics of SARS-CoV-2, with important implications for future vaccine design.
Neutralizing antibodies provide protection against viruses and are generated because of vaccination or prior infections. The main target of anti-SARS-CoV-2 neutralizing antibodies is a protein called spike, which decorates the viral particle and mediates viral entry into cells. As SARS-CoV-2 evolves, mutations accumulate in the spike protein, allowing the virus to escape antibody-mediated immunity and decreasing vaccine effectiveness. Multiple SARS-CoV-2 variants have appeared since the start of the COVID-19 pandemic, causing various waves of infection through the population and infectingin some casespeople that had been previously infected or vaccinated. Because the antibody response is highly specific, individuals infected with different variants are likely to have different repertoires of neutralizing antibodies. We studied the breadth and potency of the antibody-mediated response against different SARS-CoV-2 variants using sera from vaccinated people as well as from people infected with different variants. We show that potency of the antibody response against different SARS-CoV-2 variants depends on the particular variant that infected each person, the exposure type (infection or vaccination) and the number and order of exposures. Our study provides insight into the interplay between virus evolution and immunity, as well as important information for the development of better vaccination strategies.
Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos , Vacinação , Anticorpos Antivirais , Anticorpos Neutralizantes , Glicoproteína da Espícula de CoronavírusRESUMO
BACKGROUND: Dengue's emergence in West Africa was typified by the Burkina Faso outbreaks in 2016 and 2017, the nation's largest to date. In both years, we undertook three-month surveys of Aedes populations in or near the capital city Ouagadougou, where the outbreaks were centered. METHODOLOGY: In 1200LG (urban), Tabtenga (peri-urban) and Goundry (rural) localities, we collected indoor and outdoor resting mosquito adults, characterized larval habitats and containers producing pupae and reared immature stages to adulthood in the laboratory for identification. All mosquito adults were identified morphologically. Host species (from which bloodmeals were taken) were identified by PCR. Generalized mixed models were used to investigate relationships between adult or larval densities and multiple explanatory variables. RESULTS: From samples in 1,780 houses, adult Ae. aegypti were significantly more abundant in the two urban localities (Tabtenga and 1200 LG) in both years than in the rural site (Goundry), where Anopheles spp. were far more common. Results from adult collections indicated a highly exophilic and anthropophilic (>90% bloodmeals of human origin) vector population, but with a relatively high proportion of bloodfed females caught inside houses. Habitats producing most pupae were waste tires (37% of total pupae), animal troughs (44%) and large water barrels (30%). While Stegomyia indices were not reliable indicators of adult mosquito abundance, shared influences on adult and immature stage densities included rainfall and container water level, collection month and container type/purpose. Spatial analysis showed autocorrelation of densities, with a partial overlap in adult and immature stage hotspots. CONCLUSION: Results provide an evidence base for the selection of appropriate vector control methods to minimize the risk, frequency and magnitude of future outbreaks in Ouagadougou. An integrated strategy combining community-driven practices, waste disposal and insecticide-based interventions is proposed. The prospects for developing a regional approach to arbovirus control in West Africa or across Africa are discussed.
Assuntos
Aedes , Arbovírus , Dengue , Adulto , Animais , Burkina Faso/epidemiologia , Dengue/epidemiologia , Surtos de Doenças , Ecologia , Feminino , Humanos , Larva , Mosquitos Vetores , Pupa , ÁguaRESUMO
The response to recent dengue outbreaks in Burkina Faso was insecticide-based, despite poor knowledge of the vector population's susceptibility to the insecticides used. Here, we report on the susceptibility to the main insecticide classes and identify important underlying mechanisms in Aedes aegypti populations in Ouagadougou and Banfora, in 2019 and 2020. Wild Ae. aegypti were tested as adults in WHO bioassays and then screened in real time melting curve qPCR analyses to genotype the F1534C, V1016I, and V410L Aedes kdr mutations. Ae. aegypti showed moderate resistance to 0.1% bendiocarb (80-95% survival post-exposure), 0.8% Malathion (60-100%), 0.21% pirimiphos-methyl (75% - 97%), and high resistance to 0.03% deltamethrin (20-70%). PBO pre-exposure partially restored pyrethroid susceptibility. Genotyping detected high frequency of 1534C allele (0.92) and moderate 1016I (0.1-0.32). The V410L mutation was detected in Burkina Faso for the first time (frequency 0.1-0.36). Mosquitoes surviving 4 h exposure to 0.03% deltamethrin had significantly higher frequencies of the F1534C mutation than dead mosquitoes (0.70 vs. 0.96, p < 0.0001) and mosquitoes surviving 2 - 4 h exposure had a significantly reduced life span. Ae. aegypti from Burkina Faso are resistant to multiple insecticide classes with multiple mechanisms involved, demonstrating the essential role of insecticide resistance monitoring within national dengue control programmes.
Assuntos
Aedes , Dengue , Inseticidas , Piretrinas , Aedes/fisiologia , Animais , Burkina Faso , Dengue/prevenção & controle , Dengue/veterinária , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Mosquitos Vetores/genética , Mutação , Piretrinas/farmacologiaRESUMO
Lyme disease is usually associated with forested habitats but has recently emerged on treeless islands in the Western Isles of Scotland. The environmental and human components of Lyme disease risk in open habitats remain unknown. We quantified the environmental hazard and risk factors for human tick bite exposure among treeless islands with low and high Lyme disease incidence in the Western Isles. We found a higher prevalence of Borrelia burgdorferi sensu lato-infected ticks on high-incidence than on low-incidence islands (6.4% vs. 0.7%); we also found that residents of high-incidence islands reported increased tick bite exposure. Most tick bites (72.7%) occurred <1 km from the home, including many in home gardens. Residents of high Lyme disease incidence islands reported increasing problems with ticks; many suggested changing deer distribution as a potential driver. We highlight the benefits of an integrated approach in understanding the factors that contribute to Lyme disease emergence.
Assuntos
Cervos , Ixodes , Doença de Lyme , Animais , Humanos , Ilhas , Doença de Lyme/epidemiologia , Ninfa , Escócia/epidemiologia , Reino UnidoRESUMO
Serology is a core component of the surveillance and management of viral zoonoses. Virus neutralization tests are a gold standard serological diagnostic, but requirements for large volumes of serum and high biosafety containment can limit widespread use. Here, focusing on Rabies lyssavirus, a globally important zoonosis, we developed a pseudotype micro-neutralization rapid fluorescent focus inhibition test (pmRFFIT) that overcomes these limitations. Specifically, we adapted an existing micro-neutralization test to use a green fluorescent protein-tagged murine leukaemia virus pseudotype in lieu of pathogenic rabies virus, reducing the need for specialized reagents for antigen detection and enabling use in low-containment laboratories. We further used statistical models to generate rapid, quantitative predictions of the probability and titre of rabies virus-neutralizing antibodies from microscopic imaging of neutralization outcomes. Using 47 serum samples from domestic dogs with neutralizing antibody titres estimated using the fluorescent antibody virus neutralization test (FAVN), pmRFFIT showed moderate sensitivity (78.79%) and high specificity (84.62%). Despite small conflicts, titre predictions were correlated across tests repeated on different dates both for dog samples (r = 0.93) and in a second data set of sera from wild common vampire bats (r = 0.72, N = 41), indicating repeatability. Our test uses a starting volume of 3.5 µl of serum, estimates titres from a single dilution of serum rather than requiring multiple dilutions and end point titration, and may be adapted to target neutralizing antibodies against alternative lyssavirus species. The pmRFFIT enables high-throughput detection of rabies virus-neutralizing antibodies in low-biocontainment settings and is suited to studies in wild or captive animals where large serum volumes cannot be obtained.
Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Doenças do Cão/sangue , Testes de Neutralização/veterinária , Vírus da Raiva/isolamento & purificação , Raiva/veterinária , Animais , Cães , Proteínas de Fluorescência Verde/química , Testes de Neutralização/instrumentação , Raiva/sangueRESUMO
Identifying drivers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure and quantifying population immunity is crucial to prepare for future epidemics. We performed a serial cross-sectional serosurvey throughout the first pandemic wave among patients from the largest health board in Scotland. Screening of 7480 patient serum samples showed a weekly seroprevalence ranging from 0.10% to 8.23% in primary and 0.21% to 17.44% in secondary care, respectively. Neutralization assays showed that highly neutralizing antibodies developed in about half of individuals who tested positive with enzyme-linked immunosorbent assay, mainly among secondary care patients. We estimated the individual probability of SARS-CoV-2 exposure and quantified associated risk factors. We show that secondary care patients, male patients, and 45-64-year-olds exhibit a higher probability of being seropositive. The identification of risk factors and the differences in virus neutralization activity between patient populations provided insights into the patterns of virus exposure during the first pandemic wave and shed light on what to expect in future waves.
Assuntos
COVID-19/imunologia , SARS-CoV-2/imunologia , Adolescente , Adulto , Idoso , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , COVID-19/diagnóstico , COVID-19/epidemiologia , Linhagem Celular , Estudos Transversais , Atenção à Saúde , Demografia , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunidade , Masculino , Pessoa de Meia-Idade , Pandemias , Fatores de Risco , Escócia/epidemiologia , Estudos Soroepidemiológicos , Adulto JovemRESUMO
BACKGROUND: The efficacy of long-lasting insecticidal nets (LLINs) in preventing malaria in Africa is threatened by insecticide resistance. Bioassays assessing 24-hour mortality post-LLIN exposure have established that resistance to the concentration of pyrethroids used in LLINs is widespread. However, although mosquitoes may no longer be rapidly killed by LLIN exposure, a delayed mortality effect has been shown to reduce the transmission potential of mosquitoes exposed to nets. This has been postulated to partially explain the continued efficacy of LLINs against pyrethroid-resistant populations. Burkina Faso is one of a number of countries with very high malaria burdens and pyrethroid-resistant vectors, where progress in controlling this disease has stagnated. We measured the impact of LLIN exposure on mosquito longevity in an area of the country with intense pyrethroid resistance to establish whether pyrethroid exposure was still shortening mosquito lifespan in this setting. METHODS: We quantified the immediate and delayed mortality effects of LLIN exposure using standard laboratory WHO cone tests, tube bioassays and experimental hut trials on Anopheles gambiae populations originating from the Cascades region of Burkina Faso using survival analysis and a Bayesian state-space model. RESULTS: Following single and multiple exposures to a PermaNet 2.0 LLIN only one of the four mosquito populations tested showed evidence of delayed mortality. No delayed mortality was seen in experimental hut studies using LLINs. A delayed mortality effect was only observed in WHO tube bioassays when deltamethrin concentration was increased above the standard diagnostic dose. CONCLUSIONS: As mosquito pyrethroid-resistance increases in intensity, delayed effects from LLIN exposure are substantially reduced or absent. Given the rapid increase in resistance occurring in malaria vectors across Africa it is important to determine whether the failure of LLINs to shorten mosquito lifespan is now a widespread phenomenon as this will have important implications for the future of this pivotal malaria control tool.
Assuntos
Anopheles , Inseticidas/farmacologia , Malária/prevenção & controle , Controle de Mosquitos , Animais , Bioensaio , Burkina Faso , Resistência a Inseticidas , Mosquiteiros Tratados com Inseticida/parasitologia , Mortalidade , Mosquitos Vetores/parasitologia , Nitrilas/farmacologia , Piretrinas/farmacologiaRESUMO
Despite the global efforts made in the fight against malaria, the disease is resurging. One of the main causes is the resistance that Anopheles mosquitoes, vectors of the disease, have developed to insecticides. Anopheles must survive for at least 10 days to possibly transmit malaria. Therefore, to evaluate and improve malaria vector control interventions, it is imperative to monitor and accurately estimate the age distribution of mosquito populations as well as their population sizes. Here, we demonstrate a machine-learning based approach that uses mid-infrared spectra of mosquitoes to characterise simultaneously both age and species identity of females of the African malaria vector species Anopheles gambiae and An. arabiensis, using laboratory colonies. Mid-infrared spectroscopy-based prediction of mosquito age structures was statistically indistinguishable from true modelled distributions. The accuracy of classifying mosquitoes by species was 82.6%. The method has a negligible cost per mosquito, does not require highly trained personnel, is rapid, and so can be easily applied in both laboratory and field settings. Our results indicate this method is a promising alternative to current mosquito species and age-grading approaches, with further improvements to accuracy and expansion for use with wild mosquito vectors possible through collection of larger mid-infrared spectroscopy data sets.
RESUMO
BACKGROUND: A three-year longitudinal study was conducted in four sentinel sites from different ecological settings in Burkina Faso, between 2008 and 2010 to identify longitudinal changes in insecticide resistance within Anopheles gambiae complex species based on larval collection. During this study, adult mosquitoes were also collected indoor and outdoor using several methods of collection. The present study reports the diversity of malaria vectors and the 1014F-genotype from this adult collection and investigates the association between this 1014F-genotype and sporozoite rate. METHODS: Adult mosquitoes were collected from July to August (corresponding to the start of rainy season) and October to November (corresponding to the end of rainy season) over 3 years (2008-2010) at four sites across the country, using pyrethrum spray catches (PSC), exit traps and pit shelters. Anopheles gambiae complex mosquitoes were identified to species and genotyped for the L1014F kdr mutation by PCR using genomic DNA. The circumsporozoite antigen of Plasmodium falciparum was detected in mosquitoes using sandwich ELISA. RESULTS: Overall 9212 anopheline mosquitoes were collected during the study period. Of those, 6767 mosquitoes were identified as Anopheles gambiae sensu lato (s.l.). Anopheles arabiensis, Anopheles coluzzii, Anopheles gambiae and or Anopheles funestus were incriminated as vectors of P. falciparum in the study area with an average sporozoite rate of 5%, (95% CI 4.14-5.99%). The kdr1014F-genotype frequencies were 11.44% (95% CI 2.5-39.85%), 19.2% (95% CI 4.53-53.73%) and 89.9 (95% CI 63.14-97.45%), respectively for An. arabiensis, An. coluzzii and An. gambiae. The proportion of the 1014F-genotype varied between sporozoite-infected and uninfected An. gambiae s.l. group. There was no significant difference in the 1014F-genotype frequency between infected and uninfected mosquitoes. CONCLUSION: The current study shows the diversity of malaria vectors and significant interaction between species composition and kdr1014F-genotype in An. gambiae complex mosquitoes from Burkina Faso. In this study, no associations were found between the 1014F-genotype and P. falciparum infection in the major malaria vector An. gambiae s.l.
Assuntos
Anopheles/genética , Ecossistema , Genótipo , Resistência a Inseticidas/genética , Malária/transmissão , Animais , Anopheles/parasitologia , Burkina Faso , Ensaio de Imunoadsorção Enzimática , Feminino , Proteínas de Insetos/genética , Inseticidas , Estudos Longitudinais , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia , Mutação , Plasmodium falciparum , Reação em Cadeia da PolimeraseRESUMO
Understanding multi-host pathogen maintenance and transmission dynamics is critical for disease control. However, transmission dynamics remain enigmatic largely because they are difficult to observe directly, particularly in wildlife. Here, we investigate the transmission dynamics of canine parvovirus (CPV) using state-space modelling of 20 years of CPV serology data from domestic dogs and African lions in the Serengeti ecosystem. We show that, although vaccination reduces the probability of infection in dogs, and despite indirect enhancement of population seropositivity as a result of vaccine shedding, the vaccination coverage achieved has been insufficient to prevent CPV from becoming widespread. CPV is maintained by the dog population and has become endemic with approximately 3.5-year cycles and prevalence reaching approximately 80%. While the estimated prevalence in lions is lower, peaks of infection consistently follow those in dogs. Dogs exposed to CPV are also more likely to become infected with a second multi-host pathogen, canine distemper virus. However, vaccination can weaken this coupling, raising questions about the value of monovalent versus polyvalent vaccines against these two pathogens. Our findings highlight the need to consider both pathogen- and host-level community interactions when seeking to understand the dynamics of multi-host pathogens and their implications for conservation, disease surveillance and control programmes.
Assuntos
Doenças do Cão/transmissão , Leões , Infecções por Parvoviridae/veterinária , Parvovirus Canino/fisiologia , Animais , Teorema de Bayes , Doenças do Cão/epidemiologia , Cães , Ecossistema , Modelos Biológicos , Infecções por Parvoviridae/epidemiologia , Infecções por Parvoviridae/transmissão , Prevalência , Estudos Soroepidemiológicos , Tanzânia/epidemiologiaRESUMO
Many parasites infect multiple hosts, but estimating the transmission across host species remains a key challenge in disease ecology. We investigated the within and across host species dynamics of canine distemper virus (CDV) in grizzly bears (Ursus arctos) and wolves (Canis lupus) of the Greater Yellowstone Ecosystem (GYE). We hypothesized that grizzly bears may be more likely to be exposed to CDV during outbreaks in the wolf population because grizzly bears often displace wolves while scavenging carcasses. We used serological data collected from 1984 to 2014 in conjunction with Bayesian state-space models to infer the temporal dynamics of CDV. These models accounted for the unknown timing of pathogen exposure, and we assessed how different testing thresholds and the potential for testing errors affected our conclusions. We identified three main CDV outbreaks (1999, 2005, and 2008) in wolves, which were more obvious when we used higher diagnostic thresholds to qualify as seropositive. There was some evidence for increased exposure rates in grizzly bears in 2005, but the magnitude of the wolf effect on bear exposures was poorly estimated and depended upon our prior distributions. Grizzly bears were exposed to CDV prior to wolf reintroduction and during time periods outside of known wolf outbreaks, thus wolves are only one of several potential routes for grizzly bear exposures. Our modeling approach accounts for several of the shortcomings of serological data and is applicable to many wildlife disease systems, but is most informative when testing intervals are short. CDV circulates in a wide range of carnivore species, but it remains unclear whether the disease persists locally within the GYE carnivore community or is periodically reintroduced from distant regions with larger host populations.
RESUMO
The impact of control measures on mosquito vector fitness and demography is usually estimated from bioassays or indirect variables in the field. Whilst indicative, neither approach is sufficient to quantify the potentially complex response of mosquito populations to combined interventions. Here, large replicated mesocosms were used to measure the population-level response of the malaria vector Anopheles arabiensis to long-lasting insecticidal nets (LLINs) when used in isolation, or combined with insecticidal eave louvers (EL), or treatment of cattle with the endectocide Ivermectin (IM). State-space models (SSM) were fit to these experimental data, revealing that LLIN introduction reduced adult mosquito survival by 91% but allowed population persistence. ELs provided no additional benefit, but IM reduced mosquito fecundity by 59% and nearly eliminated all populations when combined with LLINs. This highlights the value of IM for integrated vector control, and mesocosm population experiments combined with SSM for identifying optimal combinations for vector population elimination.