Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Nano Lett ; 24(20): 5944-5951, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38588536

RESUMO

DNA is an ideal template for the design of nanoarchitectures with molecular-like features. Here, we present an optimized assembly strategy for the concatenation of DNA quasi-rings into long scaffolds. Ionic strength, which played a major role during self-assembly, produced the expected high quality only at 15 mM MgCl2. Atomic force microscopy (AFM) characterization showed several micrometer long tubular structures that were used as templates for the positioning of plasmonic nanoparticles (NPs) along a three-dimensional helical path using DNA tethers. As imaged by high-resolution scanning transmission electron microscopy (HR-STEM) and modeled by theoretical calculations, the NPs distributed into a "fusilli" fashion (i.e., a helical pasta shape), displaying chiroptical activity as revealed by a bisignated CD absorption, centered at the plasmon resonance wavelength. The present structures contribute to enrich the ever-developing arena of chiroplasmonic DNA-based nanomaterials and demonstrate that large assemblies are attainable for their future application to develop metamaterials.


Assuntos
DNA , DNA/química , Nanoestruturas/química , Microscopia de Força Atômica , Conformação de Ácido Nucleico , Nanotecnologia/métodos
2.
Environ Pollut ; 345: 123455, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301818

RESUMO

Ordinary Portland cement (OPC) is a cost-effective and conventional binder that is widely adopted in brownfield site remediation and redevelopment. However, the substantial carbon dioxide emission during OPC production and the concerns about its undesirable retention capacity for potentially toxic elements strain this strategy. To tackle this objective, we herein tailored four alternative binders (calcium aluminate cement, OPC-activated ground-granulated blast-furnace slag (GGBFS), white-steel-slag activated GGBFS, and alkaline-activated GGBFS) for facilitating immobilization of high Pb content pyrite ash, with the perspectives of enhancing Pb retention and mitigating anthropogenic carbon dioxide emissions. The characterizations revealed that the incorporation of white steel slag efficiently benefits the activity of GGBFS, herein facilitating the hydration products (mainly ettringite and calcium silicate hydrates) precipitation and Pb immobilization. Further, we quantified the cradle-to-gate carbon footprint and cost analysis attributed to each binder-Pb contaminants system, finding that the application of these alternative binders could be pivotal in the envisaged carbon-neutral world if the growth of the OPC-free roadmap continues. The findings suggest that the synergistic use of recycled white steel slag and GGBFS can be proposed as a profitable and sustainable OPC-free candidate to facilitate the management of lead-contaminated brownfield sites. The overall results underscore the potential immobilization mechanisms of Pb in multiple OPC-free/substitution binder systems and highlight the urgent need to bridge the zero-emission insights to sustainable in-situ solidification/stabilization technologies.


Assuntos
Dióxido de Carbono , Cinza de Carvão , Ferro , Sulfetos , Chumbo , Aço
3.
Colloids Surf B Biointerfaces ; 234: 113700, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104467

RESUMO

The industry transfer of laboratory-use magnetic separation is still hampered by the lack of suitable nanoparticles, both in terms of their features and large-scale availability. Surface Active Maghemite Nanoparticles (SAMNs) characterized by a unique surface chemistry, low environmental impact, scalable synthesis and functionalization were used to develop a bio-inspired lactoferrin (LF) recognition system. Based on the LF affinity for DNA, a self-assembly process was optimized for obtaining a SAMN@DNA hybrid displaying chemical and colloidal stability and LF specificity. SAMN@DNA was successfully tested for the affinity purification of LF from crude bovine whey. Advantages, such as high selectivity and loading capacity, nanoparticle re-usability, outstanding purity (96 ± 1%), preservation of protein conformation and short operational time, were highlighted. Finally, scalability was demonstrated by an automatic system performing continuous purification of LF from 100 liters day-1 of whey. This study responds to essential prerequisites, such as efficiency, re-usability and industrialization feasibility.


Assuntos
Lactoferrina , Nanopartículas , Animais , Bovinos , Compostos Férricos/química , Nanopartículas/química , DNA , Nanopartículas Magnéticas de Óxido de Ferro
4.
Biomolecules ; 13(12)2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38136670

RESUMO

Protein-nanoparticle hybridization can ideally lead to novel biological entities characterized by emerging properties that can sensibly differ from those of the parent components. Herein, the effect of ionic strength on the biological functions of recombinant His-tagged spermine oxidase (i.e., SMOX) was studied for the first time. Moreover, SMOX was integrated into colloidal surface active maghemite nanoparticles (SAMNs) via direct self-assembly, leading to a biologically active nano-enzyme (i.e., SAMN@SMOX). The hybrid was subjected to an in-depth chemical-physical characterization, highlighting the fact that the protein structure was perfectly preserved. The catalytic activity of the nanostructured hybrid (SAMN@SMOX) was assessed by extracting the kinetics parameters using spermine as a substrate and compared to the soluble enzyme as a function of ionic strength. The results revealed that the catalytic function was dominated by electrostatic interactions and that they were drastically modified upon hybridization with colloidal ɣ-Fe2O3. The fact that the affinity of SMOX toward spermine was significantly higher for the nanohybrid at low salinity is noteworthy. The present study supports the vision of using protein-nanoparticle conjugation as a means to modulate biological functions.


Assuntos
Nanopartículas , Oxirredutases atuantes sobre Doadores de Grupo CH-NH , Poliamina Oxidase , Espermina/metabolismo , Eletricidade Estática , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Nanopartículas/química
5.
FEBS Lett ; 597(19): 2461-2472, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37591635

RESUMO

In recent years, increasing numbers of noncoding RNA molecules were identified as possible components of endogenous DNA-RNA hybrid triplexes involved in gene regulation. Triplexes are potentially involved in complex molecular signaling networks that, if understood, would allow the engineering of biological computing components. Here, by making use of the enhancing and inhibiting effects of such triplexes, we demonstrate in vitro the construction of triplex-based molecular gates: 'exclusive OR' (XOR), 'exclusive NOT-OR' (XNOR), and a threshold gate, via transcription of a fluorogenic RNA aptamer. Precise modulation was displayed by the biomolecular-integrated systems over a wide interval of transcriptional outputs, ranging from drastic inhibition to significant enhancement. The present contribution represents a first example of molecular gates developed using DNA-RNA triplex nanostructures.


Assuntos
DNA , RNA , RNA/genética , DNA/genética , DNA/química , Lógica
6.
Food Chem ; 427: 136702, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37393636

RESUMO

The identification of biogenic amines and some precursor amino acids and the adulteration through stable isotopes was carried out in 114 honey from different geographic regions in Brazil (states of São Paulo (SP) and Santa Catarina (SC)) as support for evaluating quality control and food safety. Serotonin was detected in all samples, while melatonin was quantified in 92.2% of honey from SP and in 94% of SC. l-Dopa, dopamine and histamine appeared at higher levels in honey from SP. Cadaverine, putrescine, spermidine and spermine, varied little according to botanical source. Three honey from the metropolitan region of SP were considered adulterated (C4SUGARS > 7%), 92 were authentic samples (C4SUGARS - 7 to 7%) and 19 unadulterated (C4SUGARS less than - 7%), with isotopic values of δ13CH and δ13CP > 7%. The data were important for differentiating quality as a function of biogenic amines and stable isotope technique was important in detecting honey adulteration.


Assuntos
Mel , Brasil , Aminas Biogênicas , Isótopos de Carbono/análise , Açúcares
7.
J Hazard Mater ; 458: 131849, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37393826

RESUMO

Identifying immobilization mechanisms of potentially toxic elements (PTEs) is of paramount importance in the field application of solidification/stabilization. Traditionally, demanding and extensive experiments are required to better access the underlying retention mechanisms, which are usually challenging to quantify and clarify precisely. Herein, we present a geochemical model with parametric fitting techniques to reveal the solidification/stabilization of Pb-rich pyrite ash through conventional (ordinary Portland cement) and alternative (calcium aluminate cement) binders. We found that ettringite and calcium silicate hydrates exhibit strong affinities for Pb at alkaline conditions. When the hydration products are unable to stabilize all the soluble Pb in the system, part of the soluble Pb may be immobilized as Pb(OH)2. At acidic and neutral conditions, hematite from pyrite ash and newly-formed ferrihydrite are the main controlling factors of Pb, coupled with anglesite and cerussite precipitation. Thus, this work provides a much-needed complement to this widely-applied solid waste remediation technique for the development of more sustainable mixture formulations.

8.
Nucleic Acids Res ; 50(22): 13172-13182, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36537227

RESUMO

Triplex nanostructures can be formed in vitro in the promoter region of DNA templates, and it is commonly accepted that these assemblies inhibit the transcription of the downstream genes. Herein, a proof of concept highlighting the possibility of the up- or downregulation of RNA transcription is presented. Hybrid DNA-RNA triplex nanostructures were rationally designed to produce bacterial transcription units with switchable promoters. The rate of RNA production was measured using the signal of a transcribed fluorescent RNA aptamer (i.e. Broccoli). Indeed, several designed bacterial promoters showed the ability of induced transcriptional inhibition, while other properly tailored sequences demonstrated switchable enhancement of transcriptional activity, representing an unprecedented feature to date. The use of RNA-regulated transcription units and fluorescent RNA aptamers as readouts will allow the realization of biocomputation circuits characterized by a strongly reduced set of components. Triplex forming RNA oligonucleotides are proposed as smart tools for transcriptional modulation and represent an alternative to current methods for producing logic gates using protein-based components.


Assuntos
DNA , Técnicas Genéticas , Nanoestruturas , RNA , Transcrição Gênica , Sequência de Bases , DNA/genética , DNA/química , Conformação de Ácido Nucleico , Oligonucleotídeos/química , RNA/genética , Regiões Promotoras Genéticas
9.
PLoS One ; 17(10): e0275489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264899

RESUMO

Important factors may influence the bioactive compounds in grapes, including scion-rootstock interaction. Therefore, the bioactive compounds and antioxidant activity in grape skin and pulp fractions of 'Isabel Precoce', 'BRS Carmem', 'BRS Cora', 'BRS Violeta' and 'IAC 138-22 Máximo' were assessed. These cultivars, from genetic improvement programs in Brazil, have good adaptation to subtropical and tropical climate conditions, and can be widely used by winegrowers aiming at adding value to the grape. All grapevines were grafted onto 'IAC 766' and 'IAC 572' rootstocks under tropical conditions in Brazil. The highest concentration of bioactive compounds was found in skins of 'BRS Violeta', followed by 'IAC 138-22 Máximo', both grafted onto 'IAC 766'. There was a strong correlation between phenolic content and antioxidant properties, since antioxidant activity also decreased in the sequence: 'BRS Violeta' > 'IAC 138-22 Máximo' > 'BRS Cora' > 'BRS Carmem' > 'Isabel Precoce'. Skin from hybrid grapes ('BRS Violeta', 'IAC 138-22 Máximo', 'BRS Cora' and 'BRS Carmem') grafted in both rootstocks contains higher levels of (poly)phenolic compounds and antioxidant activity than 'Isabel Precoce' (V. labrusca). Skin from 'BRS Violeta' grafted onto 'IAC 766' stand out from the others due to their high content of bioactive compounds.


Assuntos
Vitis , Vitis/química , Antioxidantes/análise , Brasil , Fenóis/análise , Compostos Fitoquímicos/análise , Frutas/química
10.
Int J Mol Sci ; 23(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36293026

RESUMO

Protein-nanoparticle hybrids represent entities characterized by emerging biological properties that can significantly differ from those of the parent components. Herein, bovine serum amine oxidase (i.e., BSAO) was immobilized onto a magnetic nanomaterial constituted of surface active maghemite nanoparticles (i.e., SAMNs, the core), surface-modified with tannic acid (i.e., TA, the shell), to produce a biologically active ternary hybrid (i.e., SAMN@TA@BSAO). In comparison with the native enzyme, the secondary structure of the immobilized BSAO responded to pH variations sensitively, resulting in a shift of its optimum activity from pH 7.2 to 5.0. Conversely, the native enzyme structure was not influenced by pH and its activity was affected at pH 5.0, i.e., in correspondence with the best performances of SAMN@TA@BSAO. Thus, an extensive NMR study was dedicated to the structure-function relationship of native BSAO, confirming that its low activity below pH 6.0 was ascribable to minimal structural modifications not detected by circular dichroism. The generation of cytotoxic products, such as aldehydes and H2O2, by the catalytic activity of SAMN@TA@BSAO on polyamine oxidation is envisaged as smart nanotherapy for tumor cells. The present study supports protein-nanoparticle conjugation as a key for the modulation of biological functions.


Assuntos
Amina Oxidase (contendo Cobre) , Nanoestruturas , Peróxido de Hidrogênio , Nanoestruturas/química , Poliaminas , Taninos/química , Ferro , Oxirredutases , Concentração de Íons de Hidrogênio , Aldeídos
11.
Ann Ital Chir ; 92: 339-343, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052471

RESUMO

Fournier gangrene (FG) is a deadliest condition affecting genitoperineal area in predisposed patients. A late diagnosis, thus a delayed surgical treatment, leads often to death. LRINEC score and CT scan can help in suspect, despite definitive diagnosis needs surgical exploration and histological findings. Furthermore, FG determines wide defects of genitoperineal area, thus reconstructive surgery is pivotal to restore form and function of the affected patient. Aim of this article is to discuss the use of posteromedial thigh (PMT) fasciocutaneous flap in FG reconstruction, based on authors' personal experience. A case report of a 63-year-old obese and diabetic man is presented. Two PMT flaps (10 x 17cm2) were harvested to cover a complete scrotal defect (20 x 40cm2), while penis integuments defect was treated with a two-staged surgery (dermal substitute application and skin graft). Follow-up at 4 months showed a successful outcome of PMT flaps reconstruction, with preservation of testes vitality, despite one of the flaps developed distal necrosis that was treated with further debridement and skin graft. The authors experience is followed by the decision-making process based on a literature review that led to the choice to use PMT flaps to achieve reconstruction. Furthermore, alternative flaps to treat FG, each of them with pros and cons, are discussed, despite there is not a gold standard treatment and every option must be tailored to the patient. KEY WORDS: Fournier gangrene, Genital reconstruction, Infection, Necrotizing fasciitis, Posteromedial thigh flap, Perineum reconstruction.


Assuntos
Gangrena de Fournier , Procedimentos de Cirurgia Plástica , Gangrena de Fournier/diagnóstico , Gangrena de Fournier/patologia , Gangrena de Fournier/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Procedimentos de Cirurgia Plástica/métodos , Escroto/patologia , Escroto/cirurgia , Retalhos Cirúrgicos , Coxa da Perna/cirurgia
12.
Pathogens ; 11(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35631091

RESUMO

The aim of the current study is to present a low-cost and easy-to-interpret colorimetric kit used to diagnose porcine circovirus 2 (PCV-2) to the naked eye, without any specific equipment. The aforementioned kit used as base hybrid nanoparticles resulting from the merge of surface active maghemite nanoparticles and gold nanoparticles, based on the deposition of specific PCV-2 antibodies on their surface through covalent bonds. In total, 10 negative and 40 positive samples (≥102 DNA copies/µL of serum) confirmed by qPCR technique were tested. PCV-1 virus, adenovirus, and parvovirus samples were tested as interferents to rule out likely false-positive results. Positive samples showed purple color when they were added to the complex, whereas negative samples showed red color; they were visible to the naked eye. The entire color-change process took place approximately 1 min after the analyzed samples were added to the complex. They were tested at different dilutions, namely pure, 1:10, 1:100, 1:1000, and 1:10,000. Localized surface plasmon resonance (LSPR) and transmission electron microscopy (TEM) images were generated to validate the experiment. This new real-time PCV-2 diagnostic methodology emerged as simple and economic alternative to traditional tests since the final price of the kit is USD 4.00.

13.
Front Vet Sci ; 9: 889612, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35619608

RESUMO

Clay minerals are naturally occurring rock and soil materials primarily composed of fine-grained aluminosilicate minerals, characterized by high hygroscopicity. In animal production, clays are often mixed with feed and, due to their high binding capacity towards organic molecules, used to limit animal absorption of feed contaminants, such as mycotoxins and other toxicants. Binding capacity of clays is not specific and these minerals can form complexes with different compounds, such as nutrients and pharmaceuticals, thus possibly affecting the intestinal absorption of important substances. Indeed, clays cannot be considered a completely inert feed additive, as they can interfere with gastro-intestinal (GI) metabolism, with possible consequences on animal physiology. Moreover, clays may contain impurities, constituted of inorganic micronutrients and/or toxic trace elements, and their ingestion can affect animal health. Furthermore, clays may also have effects on the GI mucosa, possibly modifying nutrient digestibility and animal microbiome. Finally, clays may directly interact with GI cells and, depending on their mineral grain size, shape, superficial charge and hydrophilicity, can elicit an inflammatory response. As in the near future due to climate change the presence of mycotoxins in feedstuffs will probably become a major problem, the use of clays in feedstuff, given their physico-chemical properties, low cost, apparent low toxicity and eco-compatibility, is expected to increase. The present review focuses on the characteristics and properties of clays as feed additives, evidencing pros and cons. Aims of future studies are suggested, evidencing that, in particular, possible interferences of these minerals with animal microbiome, nutrient absorption and drug delivery should be assessed. Finally, the fate of clay particles during their transit within the GI system and their long-term administration/accumulation should be clarified.

14.
Mar Drugs ; 20(1)2022 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-35049901

RESUMO

Cardiovascular diseases (CVDs) have emerged as a major threat to global health resulting in a decrease in life expectancy with respect to humans. Thrombosis is one of the foremost causes of CVDs, and it is characterized by the unwanted formation of fibrin clots. Recently, microbial fibrinolytic enzymes due to their specific features have gained much more attention than conventional thrombolytic agents for the treatment of thrombosis. Marine microorganisms including bacteria and microalgae have the significant ability to produce fibrinolytic enzymes with improved pharmacological properties and lesser side effects and, hence, are considered as prospective candidates for large scale production of these enzymes. There are no studies that have evaluated the fibrinolytic potential of marine fungal-derived enzymes. The current review presents an outline regarding isolation sources, production, features, and thrombolytic potential of fibrinolytic biocatalysts from marine microorganisms identified so far.


Assuntos
Bactérias , Fibrinólise/efeitos dos fármacos , Fibrinolíticos/farmacologia , Microalgas , Trombose/tratamento farmacológico , Animais , Organismos Aquáticos , Fibrinolíticos/química , Fibrinolíticos/uso terapêutico
15.
Res Vet Sci ; 144: 78-81, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35091164

RESUMO

Clay minerals, such as bentonite, are used as feed additives capable of adsorbing mycotoxins and heavy metals and have been related to many positive effects on animal health and productivity. However, these compounds seem to induce also side effects and to interact with the intestinal and ruminal microbiota. The present in vitro study is aimed at evaluating the effects of different doses of bentonite on ruminal fermentations, metabolome and mineral content. Five doses of bentonite (0, 2.5, 5, 10 and 50 mg in 150 mL total volume) were incubated (39 °C for 24 h) with a dairy cow Total Mixed Ratio (TMR) and the ruminal fluid obtained from one healthy Holstein lactating cow. The kinetics of gas production (GP) continuously monitored during the incubation evidenced no significant differences in either cumulative GP (mL/g DM) or GP rate (mL/g DM/h) between the treatment groups. After the incubation, metabolome and mineral content of treated ruminal fluids were studied in pooled replicate samples by 1H NMR spectroscopy and Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES), respectively. The NMR analysis led to the identification of 20 metabolites and suggested a clear metabolic differentiation among treatments. The ICP-OES analysis suggested that the addition of bentonite affected the concentration of Al, Ba, Ca, Cr, Mn, Mo and Sr. It is conceivable that bentonite administration does not affect gross ruminal fermentations, while it seems to modify the ruminal metabolome and the concentrations of few minerals in ruminal fluid.


Assuntos
Lactação , Rúmen , Ração Animal/análise , Animais , Bentonita/metabolismo , Bentonita/farmacologia , Bovinos , Dieta , Feminino , Fermentação , Metaboloma , Minerais/metabolismo , Rúmen/metabolismo
16.
Bioprocess Biosyst Eng ; 45(2): 237-256, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34596787

RESUMO

Immobilized enzyme-based catalytic constructs could greatly improve various industrial processes due to their extraordinary catalytic activity and reaction specificity. In recent decades, nano-enzymes, defined as enzyme immobilized on nanomaterials, gained popularity for the enzymes' improved stability, reusability, and ease of separation from the biocatalytic process. Thus, enzymes can be strategically incorporated into nanostructured materials to engineer nano-enzymes, such as nanoporous particles, nanofibers, nanoflowers, nanogels, nanomembranes, metal-organic frameworks, multi-walled or single-walled carbon nanotubes, and nanoparticles with tuned shape and size. Surface-area-to-volume ratio, pore-volume, chemical compositions, electrical charge or conductivity of nanomaterials, protein charge, hydrophobicity, and amino acid composition on protein surface play fundamental roles in the nano-enzyme preparation and catalytic properties. With proper understanding, the optimization of the above-mentioned factors will lead to favorable micro-environments for biocatalysts of industrial relevance. Thus, the application of nano-enzymes promise to further strengthen the advances in catalysis, biotransformation, biosensing, and biomarker discovery. Herein, this review article spotlights recent progress in nano-enzyme development and their possible implementation in different areas, including biomedicine, biosensors, bioremediation of industrial pollutants, biofuel production, textile, leather, detergent, food industries and antifouling.


Assuntos
Nanoestruturas , Nanotubos de Carbono , Biocatálise , Estabilidade Enzimática , Enzimas Imobilizadas/química , Nanoestruturas/química
17.
Pharmaceutics ; 13(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34452227

RESUMO

Protein kinase CK2 is largely involved in cell proliferation and apoptosis and is generally recognized as an Achilles' heel of cancer, being overexpressed in several malignancies. The beneficial effects of (-)-epigallocatechin-3-gallate (EGCG) in the prevention and treatment of several diseases, including cancer, have been widely reported. However, poor stability and limited bioavailability hinder the development of EGCG as an effective therapeutic agent. The combination of innovative nanomaterials and bioactive compounds into nanoparticle-based systems demonstrates the synergistic advantages of nanocomplexes as compared to the individual components. In the present study, we developed a self-assembled core-shell nanohybrid (SAMN@EGCG) combining EGCG and intrinsic dual-signal iron oxide nanoparticles (Surface Active Maghemite Nanoparticles). Interestingly, nano-immobilization on SAMNs protects EGCG from degradation, preventing its auto-oxidation. Most importantly, the nanohybrid was able to successfully deliver EGCG into cancer cells, displaying impressive protein kinase CK2 inhibition comparable to that obtained with the most specific CK2 inhibitor, CX-4945 (5.5 vs. 3 µM), thus promoting the phytochemical exploitation as a valuable alternative for cancer therapy. Finally, to assess the advantages offered by nano-immobilization, we tested SAMN@EGCG against Pseudomonas aeruginosa, a Gram-negative bacterium involved in severe lung infections. An improved antimicrobial effect with a drastic drop of MIC from 500 to 32.7 µM was shown.

18.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34299242

RESUMO

Aiming at creating smart nanomaterials for biomedical applications, nanotechnology aspires to develop a new generation of nanomaterials with the ability to recognize different biological components in a complex environment. It is common opinion that nanomaterials must be coated with organic or inorganic layers as a mandatory prerequisite for applications in biological systems. Thus, it is the nanomaterial surface coating that predominantly controls the nanomaterial fate in the biological environment. In the last decades, interdisciplinary studies involving not only life sciences, but all branches of scientific research, provided hints for obtaining uncoated inorganic materials able to interact with biological systems with high complexity and selectivity. Herein, the fragmentary literature on the interactions between bare abiotic materials and biological components is reviewed. Moreover, the most relevant examples of selective binding and the conceptualization of the general principles behind recognition mechanisms were provided. Nanoparticle features, such as crystalline facets, density and distribution of surface chemical groups, and surface roughness and topography were encompassed for deepening the comprehension of the general concept of recognition patterns.


Assuntos
Nanoestruturas/química , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Nanotecnologia , Coroa de Proteína/análise
19.
Chemosphere ; 283: 131211, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34153913

RESUMO

The Stoppani factory manufactured chromium for more than one century, dumping millions of tons of Chromite Ore Processing Residues (COPRs) over decades. The massive presence of COPRs resulted in an intense CrVI leaching and consequent contamination of percolating groundwater. The site offers a unique opportunity to follow COPRs evolution from the primary roasting process to the aged Cr-bearing mineral phases. Herein, new insights on COPRs mineralogy evolution and their role in CrVI release are provided by a dry sample preparation protocol, coupled with in-depth multi-technique characterization. Besides typical COPRs mineral assemblages, highly soluble Na2CrO4 and the first evidence of crocoite (PbCrO4) in a COPR contaminated site are revealed. Selective extraction experiments confirmed a strong reactivity for Cr-bearing minerals as confirmed by concentrations as high as 375 mg L-1 of leached CrVI. The mineralogical approach was combined with a nanotechnological solution for CrVI wastewater remediation. The application of naked colloidal maghemite (γ-Fe2O3) nanoparticles (SAMNs) on the complex industrial wastewater, led to > 90% CrVI removal, either under acidic or in-situ conditions. The present case study of a highly polluted site, ranging from mineral characterization to wastewater remediation, highlights the use of multidisciplinary approaches to cope with complex environmental issues.


Assuntos
Água Subterrânea , Resíduos Industriais , Cromo/análise , Resíduos Industriais/análise , Minerais
20.
Colloids Surf B Biointerfaces ; 204: 111774, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33932893

RESUMO

A variety of organic nanomaterials and organic polymers are used for enzyme immobilization to increase enzymes stability and reusability. In this study, the effects of the immobilization of enzymes on organic and organic-inorganic hybrid nano-supports are compared. Immobilization of enzymes on organic support nanomaterials was reported to significantly improve thermal, pH and storage stability, acting also as a protection against metal ions inhibitory effects. In particular, the effects of enzyme immobilization on reusability, physical, kinetic and thermodynamic parameters were considered. Due to their biocompatibility with low health risks, organic support nanomaterials represent a good choice for the immobilization of enzymes. Organic nanomaterials, and especially organic-inorganic hybrids, can significantly improve the kinetic and thermodynamic parameters of immobilized enzymes compared to macroscopic supports. Moreover, organic nanomaterials are more environment friendly for medical applications, such as prodrug carriers and biosensors. Overall, organic hybrid nanomaterials are receiving increasing attention as novel nano-supports for enzyme immobilization and will be used extensively.


Assuntos
Enzimas Imobilizadas , Nanoestruturas , Biocatálise , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA