Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Environ Pollut ; 349: 123954, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604307

RESUMO

Agricultural run-off in Australia's Mackay-Whitsunday region is a major source of nutrient and pesticide pollution to coastal and inshore ecosystems of the Great Barrier Reef. While the effects of run-off are well documented for the region's coral and seagrass habitats, the ecological impacts on estuaries, the direct recipients of run-off, are less known. This is particularly true for fish communities, which are shaped by the physico-chemical properties of coastal waterways that vary greatly in tropical regions. To address this knowledge gap, we used environmental DNA (eDNA) metabarcoding to examine fish assemblages at four locations (three estuaries and a harbour) subjected to varying levels of agricultural run-off during a wet and dry season. Pesticide and nutrient concentrations were markedly elevated during the sampled wet season with the influx of freshwater and agricultural run-off. Fish taxa richness significantly decreased in all three estuaries (F = 164.73, P = <0.001), along with pronounced changes in community composition (F = 46.68, P = 0.001) associated with environmental variables (largely salinity: 27.48% contribution to total variance). In contrast, the nearby Mackay Harbour exhibited a far more stable community structure, with no marked changes in fish assemblages observed between the sampled seasons. Among the four sampled locations, variation in fish community composition was more pronounced within the wet season (F = 2.5, P = 0.001). Notably, variation in the wet season was significantly correlated with agricultural contaminants (phosphorus: 6.25%, pesticides: 5.22%) alongside environmental variables (salinity: 5.61%, DOC: 5.57%). Historically contaminated and relatively unimpacted estuaries each demonstrated distinct fish communities, reflecting their associated catchment use. Our findings emphasise that while seasonal effects play a key role in shaping the community structure of fish in this region, agricultural contaminants are also important contributors in estuarine systems.


Assuntos
Agricultura , Recifes de Corais , DNA Ambiental , Monitoramento Ambiental , Peixes , Salinidade , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/análise , Austrália , Praguicidas , Estuários , Ecossistema
2.
Ecol Lett ; 26 Suppl 1: S91-S108, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37840024

RESUMO

Eco-evolutionary dynamics, or eco-evolution for short, are often thought to involve rapid demography (ecology) and equally rapid heritable phenotypic changes (evolution) leading to novel, emergent system behaviours. We argue that this focus on contemporary dynamics is too narrow: Eco-evolution should be extended, first, beyond pure demography to include all environmental dimensions and, second, to include slow eco-evolution which unfolds over thousands or millions of years. This extension allows us to conceptualise biological systems as occupying a two-dimensional time space along axes that capture the speed of ecology and evolution. Using Hutchinson's analogy: Time is the 'theatre' in which ecology and evolution are two interacting 'players'. Eco-evolutionary systems are therefore dynamic: We identify modulators of ecological and evolutionary rates, like temperature or sensitivity to mutation, which can change the speed of ecology and evolution, and hence impact eco-evolution. Environmental change may synchronise the speed of ecology and evolution via these rate modulators, increasing the occurrence of eco-evolution and emergent system behaviours. This represents substantial challenges for prediction, especially in the context of global change. Our perspective attempts to integrate ecology and evolution across disciplines, from gene-regulatory networks to geomorphology and across timescales, from today to deep time.


Assuntos
Evolução Biológica , Ecossistema , Mutação
3.
Evol Appl ; 16(2): 560-579, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36793678

RESUMO

Humans have built ports on all the coasts of the world, allowing people to travel, exploit the sea, and develop trade. The proliferation of these artificial habitats and the associated maritime traffic is not predicted to fade in the coming decades. Ports share common characteristics: Species find themselves in novel singular environments, with particular abiotic properties-e.g., pollutants, shading, protection from wave action-within novel communities in a melting pot of invasive and native taxa. Here, we discuss how this drives evolution, including setting up of new connectivity hubs and gateways, adaptive responses to exposure to new chemicals or new biotic communities, and hybridization between lineages that would have never come into contact naturally. There are still important knowledge gaps, however, such as the lack of experimental tests to distinguish adaptation from acclimation processes, the lack of studies to understand the putative threats of port lineages to natural populations or to better understand the outcomes and fitness effects of anthropogenic hybridization. We thus call for further research examining "biological portuarization," defined as the repeated evolution of marine species in port ecosystems under human-altered selective pressures. Furthermore, we argue that ports act as giant mesocosms often isolated from the open sea by seawalls and locks and so provide replicated life-size evolutionary experiments essential to support predictive evolutionary sciences.

4.
Biofouling ; 38(4): 367-383, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35575060

RESUMO

Marinas are high-priority targets for marine non-indigenous species (NIS), where they compose a large portion of the biofouling communities. The practicality of water samples collection makes environmental DNA (eDNA) metabarcoding an interesting tool for routine NIS surveys. Here the effectiveness of water-eDNA-metabarcoding to identify biofouling NIS, in 10 marinas from western France, was examined. Morphological identification of specimens collected in quadrats brought out 18 sessile benthic NIS beneath floating pontoons. Water-eDNA-metabarcoding detected two thirds of them, failing to detect important NIS. However, sampling and bioinformatics filtering steps can be optimized to identify more species. In addition, this method allowed the detection of additional NIS from neighboring micro-habitats. Caution should, however, be taken when reporting putative novel NIS, because of errors in species assignment. This work highlights that water-eDNA-metabarcoding is effective for active (targeted) NIS surveys and could be significantly improved for its further use in marine NIS passive surveys.


Assuntos
DNA Ambiental , Biodiversidade , Biofilmes , Código de Barras de DNA Taxonômico/métodos , Monitoramento Ambiental/métodos , Espécies Introduzidas , Água
5.
Mol Ecol ; 30(24): 6718-6732, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34547149

RESUMO

Human-driven translocations of species have diverse evolutionary consequences such as promoting hybridization between previously geographically isolated taxa. This is well illustrated by the solitary tunicate, Ciona robusta, native to the North East Pacific and introduced in the North East Atlantic. It is now co-occurring with its congener Ciona intestinalis in the English Channel, and C. roulei in the Mediterranean Sea. Despite their long allopatric divergence, first and second generation crosses showed a high hybridization success between the introduced and native taxa in the laboratory. However, previous genetic studies failed to provide evidence of recent hybridization between C. robusta and C. intestinalis in the wild. Using SNPs obtained from ddRAD-sequencing of 397 individuals from 26 populations, we further explored the genome-wide population structure of the native Ciona taxa. We first confirmed results documented in previous studies, notably (i) a chaotic genetic structure at regional scale, and (ii) a high genetic similarity between C. roulei and C. intestinalis, which is calling for further taxonomic investigation. More importantly, and unexpectedly, we also observed a genomic hotspot of long introgressed C. robusta tracts into C. intestinalis genomes at several locations of their contact zone. Both the genomic architecture of introgression, restricted to a 1.5 Mb region of chromosome 5, and its absence in allopatric populations suggest introgression is recent and occurred after the introduction of the non-native species. Overall, our study shows that anthropogenic hybridization can be effective in promoting introgression breakthroughs between species at a late stage of the speciation continuum.


Assuntos
Ciona intestinalis , Genoma , Animais , Evolução Biológica , Ciona intestinalis/genética , Genômica , Humanos , Hibridização Genética
6.
Mar Pollut Bull ; 172: 112844, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34399279

RESUMO

Among anthropogenic habitats built in the marine environment, floating and non-floating structures can be colonized by distinct assemblages. However, there is little knowledge whether these differences are also reflected in the functional structure. This study compared the functional diversity of sessile and mobile invertebrate assemblages that settle over three months on floating vs. non-floating artificial habitats, in two Chilean ports. Using morphological, trophic, behavioral, and life history traits, we found differences between mobile and sessile assemblages regarding the effect of the type of habitat on the functional diversity. Compared to sessile assemblages, a greater functional similarity was observed for mobile assemblages, which suggests that their dispersal capacity enables them to balance the reduced connectivity between settlement structures. No traits, prevailing or selected in one or the other habitat type, was however clearly identified; a result warranting for further studies focusing on more advanced stages of community development.


Assuntos
Ecossistema , Invertebrados , Animais , Chile
7.
Ecol Evol ; 11(10): 5533-5546, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34026027

RESUMO

High-throughput sequencing of amplicons (HTSA) has been proposed as an effective approach to evaluate taxonomic and genetic diversity at the same time. However, there are still uncertainties as to how the results produced by different bioinformatics treatments impact the conclusions drawn on biodiversity and population genetics indices.We evaluated the ability of six bioinformatics pipelines to recover taxonomic and genetic diversity from HTSA data obtained from controlled assemblages. To that end, 20 assemblages were produced using 354 colonies of Botrylloides spp., sampled in the wild in ten marinas around Brittany (France). We used DNA extracted from preservative ethanol (ebDNA) after various time of storage (3, 6, and 12 months), and from a bulk of preserved specimens (bulkDNA). DNA was amplified with primers designed for targeting this ascidian genus. Results obtained from HTSA data were compared with Sanger sequencing on individual zooids (i.e., individual barcoding).Species identification and relative abundance determined with HTSA data from either ebDNA or bulkDNA were similar to those obtained with traditional individual barcoding. However, after 12 months of storage, the correlation between HTSA and individual-based data was lower than after shorter durations. The six bioinformatics pipelines were able to depict accurately the genetic diversity using standard population genetics indices (HS and FST), despite producing false positives and missing rare haplotypes. However, they did not perform equally and dada2 was the only pipeline able to retrieve all expected haplotypes.This study showed that ebDNA is a nondestructive alternative for both species identification and haplotype recovery, providing storage does not last more than 6 months before DNA extraction. Choosing the bioinformatics pipeline is a matter of compromise, aiming to retrieve all true haplotypes while avoiding false positives. We here recommend to process HTSA data using dada2, including a chimera-removal step. Even if the possibility to use multiplexed primer sets deserves further investigation to expand the taxonomic coverage in future similar studies, we showed that primers targeting a particular genus allowed to reliably analyze this genus within a complex community.

8.
J Environ Manage ; 293: 112823, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34044234

RESUMO

The International Convention for the Control and Management of Ships' Ballast Water and Sediments (BWM Convention) aims to mitigate the introduction risk of harmful aquatic organisms and pathogens (HAOP) via ships' ballast water and sediments. The BWM Convention has set regulations for ships to utilise exceptions and exemptions from ballast water management under specific circumstances. This study evaluated local and regional case studies to provide clarity for situations, where ships could be excepted or exempted from ballast water management without risking recipient locations to new introductions of HAOP. Ships may be excepted from ballast water management if all ballasting operations are conducted in the same location (Regulation A-3.5 of the BWM Convention). The same location case study determined whether the entire Vuosaari harbour (Helsinki, Finland) should be considered as the same location based on salinity and composition of HAOP between the two harbour terminals. The Vuosaari harbour case study revealed mismatching occurrences of HAOP between the harbour terminals, supporting the recommendation that exceptions based on the same location concept should be limited to the smallest feasible areas within a harbour. The other case studies evaluated whether ballast water exemptions could be granted for ships using two existing risk assessment (RA) methods (Joint Harmonised Procedure [JHP] and Same Risk Area [SRA]), consistent with Regulation A-4 of the BWM Convention. The JHP method compares salinity and presence of target species (TS) between donor and recipient ports to indicate the introduction risk (high or low) attributed to transferring unmanaged ballast water. The SRA method uses a biophysical model to determine whether HAOP could naturally disperse between ports, regardless of their transportation in ballast water. The results of the JHP case study for the Baltic Sea and North-East Atlantic Ocean determined that over 97% of shipping routes within these regions resulted in a high-risk indication. The one route assessed in the Gulf of Maine, North America also resulted in a high-risk outcome. The SRA assessment resulted in an overall weak connectivity between all ports assessed within the Gulf of the St. Lawrence, indicating that a SRA-based exemption would not be appropriate for the entire study area. In summary, exceptions and exemptions should not be considered as common alternatives for ballast water management. The availability of recent and detailed species occurrence data was considered the most important factor to conduct a successful and reliable RA. SRA models should include biological factors that influence larval dispersal and recruitment potential (e.g., pelagic larval duration, settlement period) to provide a more realistic estimation of natural dispersal.


Assuntos
Espécies Introduzidas , Água , Oceano Atlântico , Finlândia , Maine , América do Norte , Navios , Abastecimento de Água
9.
Nat Ecol Evol ; 5(3): 360-368, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495590

RESUMO

Human activity is an important driver of ecological and evolutionary change on our planet. In particular, domestication and biological introductions have important and long-lasting effects on species' genomic architecture and diversity. However, genome-wide analysis of independent domestication and introduction events within a single species has not previously been performed. The Pacific kelp Undaria pinnatifida provides such an opportunity because it has been cultivated in its native range in Northeast Asia but also introduced to four other continents in the past 50 years. Here we present the results of a genome-wide analysis of natural, cultivated and introduced populations of U. pinnatifida to elucidate human-driven evolutionary change. We demonstrate that these three categories of origin can be distinguished at the genome level, reflecting the combined influence of neutral (demography and migration) and non-neutral (selection) processes.


Assuntos
Kelp , Alga Marinha , Undaria , Agricultura , Humanos , Kelp/genética
10.
Mar Environ Res ; 163: 105231, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33302154

RESUMO

Examining the effects of disturbances within marine urban communities can shed light on their assembly rules and invasion processes. The effects of physical disturbance, through the removal of dominant native habitat-builders, were investigated in the recolonization of disturbed patches and colonization of plates on pier pilings, in a Chilean port. On pilings, disturbance substantially affected community structure after 3 months, although it slowly converged across treatments after 10 months. On plates, cryptogenic and non-indigenous species richness increased with removal severity, which was not observed in natives. Opportunistic taxa took advantage of colonizing at an early successional stage, illustrating a competition-colonization trade-off, although indirect effects might be at play (e.g. trophic competition or selective predation). Recovery of the habitat-builders then occurred at the expense of cryptogenic and non-indigenous taxa. Whether natives could continue winning against increasing propagule and colonization pressures in marine urban habitats deserves further attention. The interactions between disturbance and biological invasions herein experimentally shown in situ contribute to our understanding of multiple changes imposed by marine urbanization in a growing propagule transport network.


Assuntos
Ecossistema , Urbanização , Chile
11.
Philos Trans R Soc Lond B Biol Sci ; 375(1806): 20190547, 2020 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-32654643

RESUMO

Species introductions promote secondary contacts between taxa with long histories of allopatric divergence. Anthropogenic contact zones thus offer valuable contrasts to speciation studies in natural systems where past spatial isolations may have been brief or intermittent. Investigations of anthropogenic hybridization are rare for marine animals, which have high fecundity and high dispersal ability, characteristics that contrast to most terrestrial animals. Genomic studies indicate that gene flow can still occur after millions of years of divergence, as illustrated by invasive mussels and tunicates. In this context, we highlight three issues: (i) the effects of high propagule pressure and demographic asymmetries on introgression directionality, (ii) the role of hybridization in preventing introduced species spread, and (iii) the importance of postzygotic barriers in maintaining reproductive isolation. Anthropogenic contact zones offer evolutionary biologists unprecedented large scale hybridization experiments. In addition to breaking the highly effective reproductive isolating barrier of spatial segregation, they allow researchers to explore unusual demographic contexts with strong asymmetries. The outcomes are diverse, from introgression swamping to strong barriers to gene flow, and lead to local containment or widespread invasion. These outcomes should not be neglected in management policies of marine invasive species. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'.


Assuntos
Ciona/genética , Fluxo Gênico , Hibridização Genética , Mytilus/genética , Isolamento Reprodutivo , Animais , Especiação Genética , Espécies Introduzidas
12.
Evol Appl ; 13(3): 500-514, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32431732

RESUMO

Twenty years of genetic studies of marine invaders have shown that successful invaders are often characterized by native and introduced populations displaying similar levels of genetic diversity. This pattern is presumably due to high propagule pressure and repeated introductions. The opposite pattern is reported in this study of the brown seaweed, Sargassum muticum, an emblematic species for circumglobal invasions. Albeit demonstrating polymorphism in the native range, microsatellites failed to detect any genetic variation over 1,269 individuals sampled from 46 locations over the Pacific-Atlantic introduction range. Single-nucleotide polymorphisms (SNPs) obtained from ddRAD sequencing revealed some genetic variation, but confirmed severe founder events in both the Pacific and Atlantic introduction ranges. Our study thus exemplifies the need for extreme caution in interpreting neutral genetic diversity as a proxy for invasive potential. Our results confirm a previously hypothesized transoceanic secondary introduction from NE Pacific to Europe. However, the SNP panel unexpectedly revealed two additional distinct genetic origins of introductions. Also, conversely to scenarios based on historical records, southern rather than northern NE Pacific populations could have seeded most of the European populations. Finally, the most recently introduced populations showed the lowest selfing rates, suggesting higher levels of recombination might be beneficial at the early stage of the introduction process (i.e., facilitating evolutionary novelties), whereas uniparental reproduction might be favored later in sustainably established populations (i.e., sustaining local adaptation).

13.
Evol Appl ; 13(3): 575-599, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32431737

RESUMO

Human-mediated transport creates secondary contacts between genetically differentiated lineages, bringing new opportunities for gene exchange. When similar introductions occur in different places, they provide informally replicated experiments for studying hybridisation. We here examined 4,279 Mytilus mussels, sampled in Europe and genotyped with 77 ancestry-informative markers. We identified a type of introduced mussels, called "dock mussels," associated with port habitats and displaying a particular genetic signal of admixture between M. edulis and the Mediterranean lineage of M. galloprovincialis. These mussels exhibit similarities in their ancestry compositions, regardless of the local native genetic backgrounds and the distance separating colonised ports. We observed fine-scale genetic shifts at the port entrance, at scales below natural dispersal distance. Such sharp clines do not fit with migration-selection tension zone models, and instead suggest habitat choice and early-stage adaptation to the port environment, possibly coupled with connectivity barriers. Variations in the spread and admixture patterns of dock mussels seem to be influenced by the local native genetic backgrounds encountered. We next examined departures from the average admixture rate at different loci, and compared human-mediated admixture events, to naturally admixed populations and experimental crosses. When the same M. galloprovincialis background was involved, positive correlations in the departures of loci across locations were found; but when different backgrounds were involved, no or negative correlations were observed. While some observed positive correlations might be best explained by a shared history and saltatory colonisation, others are likely produced by parallel selective events. Altogether, genome-wide effect of admixture seems repeatable and more dependent on genetic background than environmental context. Our results pave the way towards further genomic analyses of admixture, and monitoring of the spread of dock mussels both at large and at fine spacial scales.

14.
PLoS One ; 13(12): e0206734, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30517113

RESUMO

Seaweed-associated microbiota experience spatial and temporal shifts in response to changing environmental conditions and seaweed physiology. These shifts may result in structural, functional and behavioral changes in the host with potential consequences for its fitness. They, thus, may help the host to adapt to changing environmental conditions. The current knowledge of seasonal variation of seaweed-associated microbiota is however still limited. In this study, we explored temporal and spatial variation of microbial communities associated with the invasive brown seaweed S. muticum. We sampled in northern and southern Portugal, in September, March and July-August (summer). In addition, as (pseudo-)perennial seaweeds display seasonal reproductive phenology, we sampled various parts of the individuals to disentangle the effect of temporal changes from those due to structural development variations. The diversity and structure of associated microbial communities were determined using next generation sequencing of the variable regions V5-7 of the 16S rDNA. We expected to find differentiation in associated microbial communities between regions and sampling months, but with differences depending on the seaweed structure examined. As expected, the study revealed substantial temporal shifts in S. muticum microbiome, for instance with large abundance of Rhodobacteraceae and Loktanella in September-March but prevalence of Pirellulales during the summer months. Variations between regions and tissues were also observed: in northern Portugal and on basal structures, bacterial diversity was higher as compared to the South and apical parts. All examined seaweed structures showed temporal differences in associated microbial community structure over time, except for holdfasts between September and March. Bacteria contributing to these changes varied spatially. Conversely to all other structures, the holdfast also did not show differences in associated community structure between southern and northern regions. Our study highlights the importance of structural microscale differentiations within seaweeds hosts with regard to their associated microbial communities and their importance across temporal and spatial dimensions.


Assuntos
Bactérias , Espécies Introduzidas , Consórcios Microbianos/fisiologia , Sargassum/microbiologia , Estações do Ano , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
15.
Evol Appl ; 11(9): 1582-1597, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30344629

RESUMO

Ports and farms are well-known primary introduction hot spots for marine non-indigenous species (NIS). The extent to which these anthropogenic habitats are sustainable sources of propagules and influence the evolution of NIS in natural habitats was examined in the edible seaweed Undaria pinnatifida, native to Asia and introduced to Europe in the 1970s. Following its deliberate introduction 40 years ago along the French coast of the English Channel, this kelp is now found in three contrasting habitat types: farms, marinas and natural rocky reefs. In the light of the continuous spread of this NIS, it is imperative to better understand the processes behind its sustainable establishment in the wild. In addition, developing effective management plans to curtail the spread of U. pinnatifida requires determining how the three types of populations interact with one another. In addition to an analysis using microsatellite markers, we developed, for the first time in a kelp, a ddRAD-sequencing technique to genotype 738 individuals sampled in 11 rocky reefs, 12 marinas, and two farms located along ca. 1,000 km of coastline. As expected, the RAD-seq panel showed more power than the microsatellite panel for identifying fine-grained patterns. However, both panels demonstrated habitat-specific properties of the study populations. In particular, farms displayed very low genetic diversity and no inbreeding conversely to populations in marinas and natural rocky reefs. In addition, strong, but chaotic regional genetic structure, was revealed, consistent with human-mediated dispersal (e.g., leisure boating). We also uncovered a tight relationship between populations in rocky reefs and those in nearby marinas, but not with nearby farms, suggesting spillover from marinas into the wild. At last, a temporal survey spanning 20 generations showed that wild populations are now self-sustaining, albeit there was no evidence for local adaptation to any of the three habitats. These findings highlight that limiting the spread of U. pinnatifida requires efficient management policies that also target marinas.

16.
Biofouling ; 34(7): 784-799, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30354802

RESUMO

Growing coastal urbanization together with the intensification of maritime traffic are major processes explaining the increasing rate of biological introductions in marine environments. To investigate the link between international maritime traffic and the establishment of non-indigenous species (NIS) in coastal areas, biofouling communities in three international and three nearby local ports along 100 km of coastline in south-central Chile were compared using settlement panels and rapid assessment surveys. A larger number of NIS was observed in international ports, as expected in these 'invasion hubs'. However, despite a few environmental differences between international and local ports, the two port categories did not display significant differences regarding NIS establishment and contribution to community structure over the studied period (1.5 years). In international ports, the free space could be a limiting factor for NIS establishment. The results also suggest that local ports should be considered in NIS surveillance programs in Chile.


Assuntos
Incrustação Biológica/estatística & dados numéricos , Espécies Introduzidas/estatística & dados numéricos , Animais , Chile , Navios
17.
PeerJ ; 6: e4377, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29610702

RESUMO

Ocean acidification significantly affects marine organisms in several ways, with complex interactions. Seaweeds might benefit from rising CO2 through increased photosynthesis and carbon acquisition, with subsequent higher growth rates. However, changes in seaweed chemistry due to increased CO2 may change the nutritional quality of tissue for grazers. In addition, organisms live in close association with a diverse microbiota, which can also be influenced by environmental changes, with feedback effects. As gut microbiomes are often linked to diet, changes in seaweed characteristics and associated microbiome can affect the gut microbiome of the grazer, with possible fitness consequences. In this study, we experimentally investigated the effects of acidification on the microbiome of the invasive brown seaweed Sargassum muticum and a native isopod consumer Synisoma nadejda. Both were exposed to ambient CO2 conditions (380 ppm, pH 8.16) and an acidification treatment (1,000 ppm, pH 7.86) for three weeks. Microbiome diversity and composition were determined using high-throughput sequencing of the variable regions V5-7 of 16S rRNA. We anticipated that as a result of acidification, the seaweed-associated bacterial community would change, leading to further changes in the gut microbiome of grazers. However, no significant effects of elevated CO2 on the overall bacterial community structure and composition were revealed in the seaweed. In contrast, significant changes were observed in the bacterial community of the grazer gut. Although the bacterial community of S. muticum as whole did not change, Oceanospirillales and Vibrionales (mainly Pseudoalteromonas) significantly increased their abundance in acidified conditions. The former, which uses organic matter compounds as its main source, may have opportunistically taken advantage of the possible increase of the C/N ratio in the seaweed under acidified conditions. Pseudoalteromonas, commonly associated to diseased seaweeds, suggesting that acidification may facilitate opportunistic/pathogenic bacteria. In the gut of S. nadejda, the bacterial genus Planctomycetia increased abundance under elevated CO2. This shift might be associated to changes in food (S. muticum) quality under acidification. Planctomycetia are slow-acting decomposers of algal polymers that could be providing the isopod with an elevated algal digestion and availability of inorganic compounds to compensate the shifted C/N ratio under acidification in their food. In conclusion, our results indicate that even after only three weeks of acidified conditions, bacterial communities associated to ungrazed seaweed and to an isopod grazer show specific, differential shifts in associated bacterial community. These have potential consequences for seaweed health (as shown in corals) and isopod food digestion. The observed changes in the gut microbiome of the grazer seem to reflect changes in the seaweed chemistry rather than its microbial composition.

18.
Mar Pollut Bull ; 126: 363-371, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29421113

RESUMO

This study described the occurrence of abnormalities in bivalve larvae from the Puck Bay. Analyses of plankton samples collected in 2012-2013 showed that larval Mytilus trossulus, Mya arenaria, and Cerastoderma glaucum exhibited abnormalities that could indicate adverse environmental impacts. The deformities were mainly in shells, but missing soft tissue fragments and protruding vela were also noted. In addition to larval studies, we analyzed benthic postlarvae of Mytilus trossulus. Interestingly, grooves and notches at different locations of the prodissoconch, dissoconch, and shell margin were observed. Some of these deformations were reminiscent of the indentations found on the shell edge of larvae. Comparing the proportion of abnormal postlarvae to larvae with shell abnormalities suggested that the survival of larvae with shell abnormalities was low. Overall, our results suggested that the ratio of abnormal bivalve larvae could be used as an indicator of the biological effects of hazardous substances in the pelagic environment.


Assuntos
Exoesqueleto/anormalidades , Bivalves , Monitoramento Ambiental/métodos , Larva , Animais , Países Bálticos , Baías , Poluição Ambiental , Substâncias Perigosas
19.
Ecol Evol ; 8(1): 477-492, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29321887

RESUMO

Coastal human-made structures, such as marinas and harbors, are expanding worldwide. Species assemblages described from these artificial habitats are novel relative to natural reefs, particularly in terms of the abundance of nonindigenous species (NIS). Although these fouling assemblages are clearly distinctive, the ecosystem functioning and species interactions taking place there are little understood. For instance, large predators may influence the fouling community development either directly (feeding on sessile fauna) or indirectly (feeding on small predators associated with these assemblages). In addition, by providing refuges, habitat complexity may modify the outcome of species interactions and the extent of biotic resistance (e.g., by increasing the abundance of niche-specific competitors and predators of NIS). Using experimental settlement panels deployed in the field for 2.5 months, we tested the influence of predation (i.e., caging experiment), artificial structural complexity (i.e., mimics of turf-forming species), and their interactions (i.e., refuge effects) on the development of sessile and mobile fauna in two marinas. In addition, we tested the role of biotic complexity-arising from the habitat-forming species that grew on the panels during the trial-on the richness and abundance of mobile fauna. The effect of predation and artificial habitat complexity was negligible, regardless of assemblage status (i.e., native, cryptogenic, and nonindigenous). Conversely, habitat-forming species and associated epibionts, responsible for biotic complexity, had a significant effect on mobile invertebrates (richness, abundance, and community structure). In particular, the richness and abundance of mobile NIS were positively affected by biotic complexity, with site-dependent relationships. Altogether, our results indicate that biotic complexity prevails over artificial habitat complexity in determining the distribution of mobile species under low predation pressure. Facilitation of native and non-native species thus seems to act upon diversity and community development: This process deserves further consideration in models of biotic resistance to invasion in urban marine habitats.

20.
Sci Rep ; 8(1): 1480, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367599

RESUMO

Molecular studies sometimes reveal evolutionary divergence within accepted species. Such findings can initiate taxonomic revision, as exemplified in the formerly recognized species Ciona intestinalis. While an increasing number of studies have examined the ecology, reproductive barriers and genetics of C. intestinalis and C. robusta, there are still much uncertainties regarding other species of this genus. Using experimental crosses and mitochondrial data, we investigated the evolutionary relationships among four native and introduced Ciona spp., found in sympatry in the Mediterranean Sea or English Channel. Outcome of 62 bi-parental reciprocal crosses between C. intestinalis, C. robusta, C. roulei and C. edwardsi showed that C. edwardsi is reproductively isolated from the other taxa, which is in agreement with its distinct location in the phylogenetic tree. Conversely, hybrids are easily obtained in both direction when crossing C. intestinalis and C. roulei, reinforcing the hypothesis of two genetically differentiated lineages but likely being from a same species. Altogether, this study sheds light on the evolutionary relationship in this complex genus. It also calls for further investigation notably based on genome-wide investigation to better describe the evolutionary history within the genus Ciona, a challenging task in a changing world where biological introductions are shuffling species distribution.


Assuntos
Evolução Biológica , Ciona intestinalis/genética , Cruzamentos Genéticos , Especiação Genética , Genética Populacional , Genoma , Espécies Introduzidas , Animais , Ciona intestinalis/classificação , Variação Genética , Mar Mediterrâneo , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA