RESUMO
OBJECTIVES: To investigate the tet(X) gene, a determinant of tigecycline resistance, in the emerging pathogen Elizabethkingia meningoseptica and its association with an integrative and conjugative element (ICE). METHODS: All E. meningoseptica genomes from the National Center for Biotechnology Information (n = 87) were retrieved and annotated for resistome searches using the CARD database. A phylogenic analysis was performed based on the E. meningoseptica core genome. The ICE was identified through comparative genomics with other ICEs occurring in Elizabethkingia spp. RESULTS: Phylogenetic analysis revealed E. meningoseptica genomes from six countries distributed across different lineages, some of which persisted for years. The common resistome of these genomes included blaBlaB, blaCME, blaGOB, ranA/B, aadS, and catB (genes associated with resistance to ß-lactams, aminoglycosides, and chloramphenicol). Some genomes also presented additional resistance genes (dfrA, ereD, blaVEB, aadS, and tet(X)). Interestingly, tet(X) and aadS were located in an ICE of 49 769 bp (ICEEmSQ101), which was fully obtained from the E. meningoseptica SQ101 genome. We also showed evidence that the other 27 genomes harboured this ICE. The distribution of ICEEmSQ101, carrying tet(X), was restricted to a single Chinese lineage. CONCLUSIONS: The tet(X) gene is not prevalent in the species E. meningoseptica, as previously stated for the genus Elizabethkingia, since it is present only in a single Chinese lineage. We identified that several E. meningoseptica genomes harboured an ICE that mobilized the Elizabethkingia tet(X) gene and exhibited characteristics similar to the ICEs of other Flavobacteria, which would favour their transmission in this bacterial family.
Assuntos
Antibacterianos , Infecções por Flavobacteriaceae , Flavobacteriaceae , Genoma Bacteriano , Filogenia , Antibacterianos/farmacologia , Infecções por Flavobacteriaceae/microbiologia , Flavobacteriaceae/genética , Flavobacteriaceae/efeitos dos fármacos , Flavobacteriaceae/classificação , Humanos , Testes de Sensibilidade Microbiana , Tigeciclina/farmacologia , Conjugação Genética , Prevalência , Farmacorresistência Bacteriana/genéticaRESUMO
BACKGROUND: The Amazon Region hosts invaluable and unique biodiversity as well as mineral resources. Consequently, large illegal and artisanal gold mining areas exist in indigenous territories. Mercury has been used in gold mining, and some has been released into the environment and atmosphere, primarily affecting indigenous people such as the Yanomami. In addition, other heavy metals have been associated with gold mining and other metal-dispersing activities in the region. OBJECTIVE: Investigate the gut microbiome of two semi-isolated groups from the Amazon, focusing on metal resistance. METHODS: Metagenomic data from the Yanomami and Tunapuco gut microbiome were assembled into contigs, and their putative proteins were searched against a database of metal resistance proteins. FINDINGS: Proteins associated with mercury resistance were exclusive in the Yanomami, while proteins associated with silver resistance were exclusive in the Tunapuco. Both groups share 77 non-redundant metal resistance (MR) proteins, mostly associated with multi-MR and operons with potential resistance to arsenic, nickel, zinc, copper, copper/silver, and cobalt/nickel. Although both groups harbour operons related to copper resistance, only the Tunapuco group had the pco operon. CONCLUSION: The Yanomami and Tunapuco gut microbiome shows that these people have been exposed directly or indirectly to distinct scenarios concerning heavy metals.
Assuntos
Mercúrio , Metais Pesados , Microbiota , Humanos , Cobre , Níquel , Prata , Ouro , Microbiota/genéticaRESUMO
OBJECTIVES: Among the high-risk clones of Acinetobacter baumannii, called international clones (ICs), IC2 represents the main lineage causing outbreaks worldwide. Despite the successful global spread of IC2, the occurrence of IC2 is rarely reported in Latin America. Here, we aimed to evaluate the susceptibility and genetic relatedness of isolates from a nosocomial outbreak in Rio de Janeiro/Brazil (2022) and perform genomic epidemiology analyses of the available genomes of A. baumannii. METHODS: Sixteen strains of A. baumannii were subjected to antimicrobial susceptibility tests and genome sequencing. These genomes were compared phylogenetically with other IC2 genomes from the NCBI database, and virulence and antibiotic resistance genes were searched. RESULTS: The 16 strains represented carbapenem-resistant A. baumannii (CRAB) with an extensively drug-resistant profile. In silico analysis established the relationship between the Brazilian CRAB genomes and IC2/ST2 genomes in the world. The Brazilian strains belonged to three sub-lineages, associated with genomes from countries in Europe, North America, and Asia. These sub-lineages presented three distinct capsules, KL7, KL9, and KL56. The Brazilian strains were characterised by the co-presence of blaOXA-23 and blaOXA-66, in addition to the genes APH(6), APH(3"), ANT(3"), AAC(6'), armA, and the efflux pumps adeABC and adeIJK. A large set of virulence genes was also identified: adeFGH/efflux pump; the siderophores barAB, basABCDFGHIJ, and bauBCDEF; lpxABCDLM/capsule; tssABCDEFGIKLM/T6SS; and pgaABCD/biofilm. CONCLUSION: Widespread extensively drug-resistant CRAB IC2/ST2 is currently causing outbreaks in clinical settings in southeastern Brazil. This is due to at least three sub-lineages characterised by an enormous apparatus of virulence and resistance to antibiotics, both intrinsic and mobile.
Assuntos
Acinetobacter baumannii , Carbapenêmicos , Brasil/epidemiologia , beta-Lactamases/genética , Proteína 1 Semelhante a Receptor de Interleucina-1 , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Surtos de Doenças , Acinetobacter baumannii/genéticaRESUMO
BACKGROUND The Amazon Region hosts invaluable and unique biodiversity as well as mineral resources. Consequently, large illegal and artisanal gold mining areas exist in indigenous territories. Mercury has been used in gold mining, and some has been released into the environment and atmosphere, primarily affecting indigenous people such as the Yanomami. In addition, other heavy metals have been associated with gold mining and other metal-dispersing activities in the region. OBJECTIVE Investigate the gut microbiome of two semi-isolated groups from the Amazon, focusing on metal resistance. METHODS Metagenomic data from the Yanomami and Tunapuco gut microbiome were assembled into contigs, and their putative proteins were searched against a database of metal resistance proteins. FINDINGS Proteins associated with mercury resistance were exclusive in the Yanomami, while proteins associated with silver resistance were exclusive in the Tunapuco. Both groups share 77 non-redundant metal resistance (MR) proteins, mostly associated with multi-MR and operons with potential resistance to arsenic, nickel, zinc, copper, copper/silver, and cobalt/nickel. Although both groups harbour operons related to copper resistance, only the Tunapuco group had the pco operon. CONCLUSION The Yanomami and Tunapuco gut microbiome shows that these people have been exposed directly or indirectly to distinct scenarios concerning heavy metals.
RESUMO
Infectious diseases are not only a threat to humans and animals but also to an entire ecosystem if the three axis of One Health are considered. Elizabethkingia miricola is a water-borne and opportunistic pathogen frequently evolving to high morbidity and mortality outcomes. More recently, reports on E. miricola infections causing death in different anuran species are increasing. Here, we reported the emergence, in a clinical setting in Brazil (Amazon region), of an E. miricola (EM15) with an almost untreatable antibiotic resistance phenotype that was closely related to the lineage involved with anuran infections worldwide. A genomic reconstruction revealed that EM15 belonged to a cluster represented by genomes from human and animal (anurans) sources recovered from China, Europe, and the Americas from 2002 to 2021, and from the Space Station Mir condensation water. Their resistome and virulome were also in agreement with their genetic relationship since they harboured the same set of resistance and putative virulence genes. Therefore, the emergence of EM15 in a clinical setting in the Amazon region, a hotspot area of anuran diversity and home to Amerindian groups that live in close relationship with the wildlife, may represent a warning to the public and environmental health.
RESUMO
Pseudomonas aeruginosa is considered a top priority pathogen associated with elevated morbidity and mortality. Worldwide outbreaks have been associated with a few high-risk epidemic P. aeruginosa lineages. However, the biological features involved in the persistence and spread of such lineages in clinical settings remain to be unravelled. This study reports the emergence of an extensively drug-resistant (XDR) sequence type 309 (ST309) P. aeruginosa in South America (Brazil), specifically in the Amazon region. Genomic analyses were performed with 42 complete and draft ST309 genomes, giving insights into its epidemiology, resistome and mobilome. A heterogeneous distribution of acquired antimicrobial resistance genes among ST309 genomes was observed, which included blaVIM-2, blaIMP-15 and qnrVC1, all associated with class 1 integrons. Mobilome mining showed the presence of integrative and conjugative elements (ICEs), transposons and genomic islands (GIs) harbouring a huge arsenal of heavy metal resistance determinants, which probably provided adaptive advantages to the ST309 lineage.
Assuntos
Infecções por Pseudomonas , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Brasil/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Genômica , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/epidemiologia , Pseudomonas aeruginosa/genética , beta-Lactamases/genéticaRESUMO
BACKGROUND: The gut microbiome has been increasingly acknowledged as playing a pivotal role in human health. Therefore, a number of studies have focused on variables that impact its microbial structure and consequent functionality. A wide range of factors, such as diet, age, sex, life stage, behavior, ethnicity, and diseases have been considered, and strong links were set out. However, some aspects regarding the microbiome determinants are still under-explored. DISCUSSION: Recently, Bosman et al. presented evidence that skin exposure to narrowband UVB light modulated the gut microbiome of a specific human cohort. This cohort presented an increase of biodiversity, Firmicutes and Proteobacteria, and a decrease of Bacteroidetes. Based on these findings, we revisited our data on a hunter-gatherer gut microbiome (Yanomami) and identified similarities in the gut microbiome of these two cohorts. Both presented a high abundance of Proteobacteria, which had been observed as a unique feature in the Yanomami gut microbiome, and based on Bosman et al study, could be associated with their natural sunlight exposure. CONCLUSION: In this commentary, we would like to point out that the human lifestyle concerning sunlight exposure should be considered as one force modulating the gut microbiome, highlighting, as proposed by Bosman et al, a novel skin-gut axis which is associated with health and disease.
Assuntos
Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Microbioma Gastrointestinal , Pele/efeitos da radiação , Luz Solar , Raios Ultravioleta , Bactérias/isolamento & purificação , Bacteroidetes/classificação , Bacteroidetes/crescimento & desenvolvimento , Bacteroidetes/isolamento & purificação , Biodiversidade , Firmicutes/classificação , Firmicutes/isolamento & purificação , Humanos , Indígenas Sul-Americanos , Estilo de Vida , Proteobactérias/classificação , Proteobactérias/crescimento & desenvolvimento , Proteobactérias/isolamento & purificaçãoRESUMO
OBJECTIVES: The extensively drug-resistant (XDR) Acinetobacter baumannii international clone VI (IC-6) has been identified worldwide since 2006. This study reports the emergence of IC-6 in the Brazilian Amazon region and reveals the particular genomic features considering its mobilome and resistome. METHODS: A total of 32 carbapenem-resistant A. baumannii strains recovered from Boa Vista city (Roraima, Brazil) in 2016 were characterised by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). The whole genome sequences of the Brazilian IC-6 strains were obtained. The mobilome and resistome were assessed by in silico analyses. RESULTS: PFGE and MLST demonstrated that the 32 A. baumannii strains belonged to four clones. One XDR clone corresponded to the high-risk pandemic IC-6 lineage from ST944Oxf/78Pas. The IC-6 resistome was composed of aadA5, aac(3'')-IIa, aph(3')-Ia, armA, aadB, msrE, blaTEM-1, IS15DIV-blaCTX-M-115-IS15DIV, blaOXA-90, ISAba1-blaADC-152, blaOXA-72, qacEΔ1 and sul1. Mobilome prediction revealed that blaOXA-72 was embedded in a 15.5-kb plasmid and that it was flanked by putative XerC/D-binding sites, possibly involved in blaOXA-72 mobilisation. Several resistance genes were in a 48-kb multidrug resistance genomic island inserted in the chromosome, which also harboured genes involved in host pathogenicity and adaptive traits. Interestingly, the Brazilian strains shared the blaOXA-72 and blaCTX-M-115 with IC-6/ST944Oxf/78Pas recovered in a distinct spatiotemporal context, pointing to an epidemiological link among them. CONCLUSION: This study highlights the importance of surveillance of XDR A. baumannii strains, even outside of densely populated cosmopolitan regions, to reveal the epidemiology of pandemic lineages, stressing their threat to public health.
Assuntos
Infecções por Acinetobacter/epidemiologia , Acinetobacter baumannii/classificação , Sequenciamento Completo do Genoma/métodos , beta-Lactamases/genética , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Acinetobacter baumannii/isolamento & purificação , Antibacterianos/farmacologia , Brasil/epidemiologia , Cromossomos Bacterianos/genética , Farmacorresistência Bacteriana Múltipla , Eletroforese em Gel de Campo Pulsado , Evolução Molecular , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Filogenia , Plasmídeos/genética , Vigilância da PopulaçãoRESUMO
Using a metagenomic approach, we identified hepatitis A virus among cases of acute febrile illnesses that occurred in 2008-2012 in Brazil suspected as yellow fever. These findings reinforce the challenge facing routine clinical diagnosis in complex epidemiological scenarios.
Assuntos
Hepatite A/diagnóstico , Febre Amarela/diagnóstico , Brasil/epidemiologia , Genótipo , Hepatite A/epidemiologia , Vírus da Hepatite A/genética , Humanos , Metagenômica , Febre Amarela/epidemiologia , Vírus da Febre Amarela/genéticaRESUMO
Penicillin is the antibiotic of choice for the treatment of meningococcal infections, and mutations in penA gene are involved with reduced susceptibility (penI) emergence to this antibiotic. This study aimed to characterize the penA allelic diversity, their association with penI phenotype and distribution among prevalent meningococci serogroups in Brazil. The entire penA from 49 invasive strains of distinct serogroups circulating in Brazil for more than two decades were obtained by PCR and sequencing. Additionally, the penA from 22 publicly available complete Neisseria meningitidis genomes from Brazil were included in the study. The allelic diversity was determined and a genetic tree was built using the penA sequence alignment. The penicillin MIC was obtained by the E-Test method. In general, the identified penA alleles correlated with the observed penI phenotype. The canonical penA1 was the most prevalent allele, however, several altered penA were also identified in strains presenting increased penicillin MICs. It was identified a new penA amino acid position (residue 480) that possibly influence the penicillin MIC in some strains. Interestingly, the altered penA14 was found in penI invasive MenC cc103 strains spread in Brazil and persisting since 2011, indicating that the biological cost imposed by penI phenotype can be ameliorated by particular features present in this lineage, which represents an additional public health threat.
Assuntos
Antibacterianos/farmacologia , Infecções Meningocócicas/microbiologia , Neisseria meningitidis Sorogrupo C/genética , Resistência às Penicilinas/genética , Proteínas de Ligação às Penicilinas/genética , Penicilinas/farmacologia , Alelos , Brasil , Genes Bacterianos , Variação Genética , Humanos , Testes de Sensibilidade Microbiana , Alinhamento de Sequência , SorogrupoRESUMO
Klebsiella pneumoniae, Klebsiella variicola and Klebsiella quasipneumoniae are difficult to differentiate phenotypically, leading to misinterpretation of their infection prevalence. We propose a multiplex PCR for blaSHV, blaLEN and blaOKP and their flanking gene (deoR). Since this scheme focuses only on chromosomal genes, it will be feasible for Klebsiella identification in the clinical routine.
Assuntos
Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , Klebsiella/genética , Reação em Cadeia da Polimerase Multiplex/métodos , DNA Bacteriano/genética , Humanos , Testes de Sensibilidade Microbiana/métodos , beta-Lactamases/genéticaRESUMO
We report here the first complete mitochondria genome of Onchocerca volvulus from a focus outside of Africa. An O. volvulus mitogenome from the Brazilian Amazonia focus was obtained using a combination of high-throughput and Sanger sequencing technologies. Comparisons made between this mitochondrial genome and publicly available mitochondrial sequences identified 46 variant nucleotide positions and suggested that our Brazilian mitogenome is more closely related to Cameroon-origin mitochondria than West African-origin mitochondria. As well as providing insights into the origins of Latin American onchocerciasis, the Brazilian Amazonia focus mitogenome may also have value as an epidemiological resource.
Assuntos
Genoma Mitocondrial/genética , Onchocerca volvulus/genética , Animais , Brasil , Camarões , Reação em Cadeia da Polimerase , Análise de Sequência de DNARESUMO
Guanabara Bay is the second largest bay in the coast of Brazil, with an area of 384 km(2). In its surroundings live circa 16 million inhabitants, out of which 6 million live in Rio de Janeiro city, one of the largest cities of the country, and the host of the 2016 Olympic Games. Anthropogenic interference in Guanabara Bay area started early in the XVI century, but environmental impacts escalated from 1930, when this region underwent an industrialization process. Herein we present an overview of the current environmental and sanitary conditions of Guanabara Bay, a consequence of all these decades of impacts. We will focus on microbial communities, how they may affect higher trophic levels of the aquatic community and also human health. The anthropogenic impacts in the bay are flagged by heavy eutrophication and by the emergence of pathogenic microorganisms that are either carried by domestic and/or hospital waste (e.g., virus, KPC-producing bacteria, and fecal coliforms), or that proliferate in such conditions (e.g., vibrios). Antibiotic resistance genes are commonly found in metagenomes of Guanabara Bay planktonic microorganisms. Furthermore, eutrophication results in recurrent algal blooms, with signs of a shift toward flagellated, mixotrophic groups, including several potentially harmful species. A recent large-scale fish kill episode, and a long trend decrease in fish stocks also reflects the bay's degraded water quality. Although pollution of Guanabara Bay is not a recent problem, the hosting of the 2016 Olympic Games propelled the government to launch a series of plans to restore the bay's water quality. If all plans are fully implemented, the restoration of Guanabara Bay and its shores may be one of the best legacies of the Olympic Games in Rio de Janeiro.
RESUMO
We report the complete genome sequence and analysis of an invasive Corynebacterium diphtheriae strain that caused endocarditis in Rio de Janeiro, Brazil. It was selected for sequencing on the basis of the current relevance of nontoxigenic strains for public health. The genomic information was explored in the context of diversity, plasticity and genetic relatedness with other contemporary strains.
Assuntos
Corynebacterium diphtheriae/genética , DNA Bacteriano/genética , Genoma Bacteriano/genética , Brasil , Corynebacterium diphtheriae/classificação , Corynebacterium diphtheriae/patogenicidade , Difteria/genética , Filogenia , VirulênciaRESUMO
We report the complete genome sequence and analysis of an invasive Corynebacterium diphtheriae strain that caused endocarditis in Rio de Janeiro, Brazil. It was selected for sequencing on the basis of the current relevance of nontoxigenic strains for public health. The genomic information was explored in the context of diversity, plasticity and genetic relatedness with other contemporary strains.