Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Malar J ; 9: 325, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21078147

RESUMO

BACKGROUND: The PFD1235w Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigen is associated with severe malaria in children and can be expressed on the surface of infected erythrocytes (IE) adhering to ICAM1. However, the exact three-dimensional structure of this PfEMP1 and its surface-exposed epitopes are unknown. An insect cell and Escherichia coli based system was used to express single and double domains encoded by the pfd1235w var gene. The resulting recombinant proteins have been evaluated for yield and purity and their ability to induce rat antibodies, which react with the native PFD1235w PfEMP1 antigen expressed on 3D7PFD1235w-IE. Their recognition by human anti-malaria antibodies from previously infected Tanzanian donors was also analysed. METHODS: The recombinant proteins were run on SDS-PAGE and Western blots for quantification and size estimation. Insect cell and E. coli-produced recombinant proteins were coupled to a bead-based Luminex assay to measure the plasma antibody reactivity of 180 samples collected from Tanzanian individuals. The recombinant proteins used for immunization of rats and antisera were also tested by flow cytometry for their ability to surface label 3D7PFD1235w-IE. RESULTS: All seven pAcGP67A constructs were successfully expressed as recombinant protein in baculovirus-infected insect cells and subsequently produced to a purity of 60-97% and a yield of 2-15 mg/L. By comparison, only three of seven pET101/D-TOPO constructs expressed in the E. coli system could be produced at all with purity and yield ranging from 3-95% and 6-11 mg/L. All seven insect cell, but only two of the E. coli produced proteins induced antibodies reactive with native PFD1235w expressed on 3D7PFD1235w-IE. The recombinant proteins were recognized in an age- and transmission intensity-dependent manner by antibodies from 180 Tanzanian individuals in a bead-based Luminex assay. CONCLUSIONS: The baculovirus based insect cell system was distinctly superior to the E. coli expression system in producing a larger number of different recombinant PFD1235w protein domains and these were significantly easier to purify at a useful yield. However, proteins produced in both systems were able to induce antibodies in rats, which can recognize the native PFD1235w on the surface of IE.


Assuntos
Anticorpos Antiprotozoários/sangue , Imunoglobulina G/sangue , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/prevenção & controle , Proteínas de Protozoários/imunologia , Adolescente , Animais , Baculoviridae/genética , Linhagem Celular , Criança , Pré-Escolar , Escherichia coli/genética , Humanos , Insetos , Vacinas Antimaláricas/genética , Vacinas Antimaláricas/isolamento & purificação , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Ratos , Tanzânia , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/isolamento & purificação , Adulto Jovem
2.
PLoS Pathog ; 6(9): e1001083, 2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20824088

RESUMO

The Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens play a major role in cytoadhesion of infected erythrocytes (IE), antigenic variation, and immunity to malaria. The current consensus on control of variant surface antigen expression is that only one PfEMP1 encoded by one var gene is expressed per cell at a time. We measured var mRNA transcript levels by real-time Q-PCR, analysed var gene transcripts by single-cell FISH and directly compared these with PfEMP1 antigen surface expression and cytoadhesion in three different antibody-selected P. falciparum 3D7 sub-lines using live confocal microscopy, flow cytometry and in vitro adhesion assays. We found that one selected parasite sub-line simultaneously expressed two different var genes as surface antigens, on single IE. Importantly, and of physiological relevance to adhesion and malaria pathogenesis, this parasite sub-line was found to bind both CD31/PECAM1 and CD54/ICAM1 and to adhere twice as efficiently to human endothelial cells, compared to infected cells having only one PfEMP1 variant on the surface. These new results on PfEMP1 antigen expression indicate that a re-evaluation of the molecular mechanisms involved in P. falciparum adhesion and of the accepted paradigm of absolutely mutually exclusive var gene transcription is required.


Assuntos
Eritrócitos/metabolismo , Eritrócitos/parasitologia , Molécula 1 de Adesão Intercelular/metabolismo , Malária Falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Proteínas de Protozoários/metabolismo , Variação Antigênica , Antígenos de Superfície/metabolismo , Northern Blotting , Western Blotting , Adesão Celular , Movimento Celular , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Hibridização in Situ Fluorescente , Molécula 1 de Adesão Intercelular/genética , Malária Falciparum/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA