Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Front Neurosci ; 17: 1279587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811330
2.
Neuroimage Clin ; 39: 103497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37632990

RESUMO

INTRODUCTION: The leading treatment for motor signs of Parkinson's disease is L-DOPA, but, upon extended use, it can lead to levodopa-induced dyskinesia (LID). Serotonergic neurons are involved in LID etiology and previous pre-clinical studies have shown that NLX-112, a 5-HT1A biased agonist, has robust antidyskinetic effects. Here, we investigated its effects in hemiparkinsonian (HPK) rats with a unilateral nigrostriatal 6-OHDA lesion. METHODS: We compared HPK rats with LID (i.e., sensitized to the dyskinetic effects of chronic L-DOPA) and without LID (HPK-non-LID), using [18F]FDG PET imaging and fMRI functional connectivity following systemic treatment with saline, L-DOPA, NLX-112 or L-DOPA + NLX-112. RESULTS: In HPK-non-LID rats, [18F]FDG PET experiments showed that L-DOPA led to hypermetabolism in motor areas (cerebellum, brainstem, and mesencephalic locomotor region) and to hypometabolism in cortical regions. L-DOPA effects were also observed in HPK-LID rats, with the additional emergence of hypermetabolism in raphe nuclei and hypometabolism in hippocampus and striatum. NLX-112 attenuated L-DOPA-induced raphe hypermetabolism and cingulate cortex hypometabolism in HPK-LID rats. Moreover, in fMRI experiments NLX-112 partially corrected the altered neural circuit connectivity profile in HPK-LID rats, through activity in regions rich in 5-HT1A receptors. CONCLUSION: This neuroimaging study sheds light for the first time on the brain activation patterns of HPK-LID rats. The 5-HT1A receptor agonist, NLX-112, prevents occurrence of LID, likely by activating pre-synaptic autoreceptors in the raphe nuclei, resulting in a partial restoration of brain metabolic and connectivity profiles. In addition, NLX-112 also rescues L-DOPA-induced deficits in cortical activation, suggesting potential benefit against non-motor symptoms of Parkinson's disease.


Assuntos
Discinesias , Doença de Parkinson , Animais , Ratos , Levodopa/efeitos adversos , Receptor 5-HT1A de Serotonina , Fluordesoxiglucose F18 , Serotonina , Imagem Multimodal
3.
Front Neurosci ; 17: 1213941, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521685

RESUMO

Introduction: Ketamine, a glutamate NMDA receptor antagonist, is suggested to act very rapidly and durably on the depressive symptoms including treatment-resistant patients but its mechanisms of action remain unclear. There is a requirement for non-invasive biomarkers, such as imaging techniques, which hold promise in monitoring and elucidating its therapeutic impact. Methods: We explored the glucose metabolism with [18F]FDG positron emission tomography (PET) in ten male rats in a longitudinal study designed to compare imaging patterns immediately after acute subanaesthetic ketamine injection (i.p. 10 mg/kg) with its sustained effects, 5 days later. Changes in [18F]FDG uptake following ketamine administration were estimated using a voxel-based analysis with SPM12 software, and a region of interest (ROI) analysis. A metabolic connectivity analysis was also conducted to estimate the immediate and delayed effects of ketamine on the inter-individual metabolic covariance between the ROIs. Results: No significant difference was observed in brain glucose metabolism immediately following acute subanaesthetic ketamine injection. However, a significant decrease of glucose uptake appeared 5 days later, reflecting a sustained and delayed effect of ketamine in the frontal and the cingulate cortex. An increase in the raphe, caudate and cerebellum was also measured. Moreover, metabolic connectivity analyses revealed a significant decrease between the hippocampus and the thalamus at day 5 compared to the baseline. Discussion: This study showed that the differences in metabolic profiles appeared belatedly, 5 days after ketamine administration, particularly in the cortical regions. Finally, this methodology will help to characterize the effects of future molecules for the treatment of treatment resistant depression.

4.
J Psychopharmacol ; 36(11): 1273-1279, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36205074

RESUMO

BACKGROUND: There is an urgent need to understand and reverse cognitive impairment. The lack of appropriate animal models combined with the limited knowledge of pathophysiological mechanisms makes the development of new cognition-enhancing drugs complex. Scopolamine is a pharmacologic agent which impairs cognition and functional imaging in a wide range of animal species, similarly to what is seen in cognitive impairment in humans. METHODS: In this study, using a functional ultrasound (fUS) neuroimaging technique, we monitored the impact of donepezil (DPZ), a potent acetylcholinesterase inhibitor and first-line treatment in patients with mild to moderate Alzheimer's disease, in a scopolamine-induced mouse model. RESULTS: We demonstrated that despite its low impact on the cerebral blood volume (CBV) signal, scopolamine injection produced an overall decrease in functional connectivity between various brain areas. In addition, we revealed that DPZ induced a strong decrease in CBV signal without causing a difference in functional connectivity. CONCLUSION: Finally, our work highlighted that DPZ counteracted the impact of scopolamine on functional connectivity changes and confirmed the interest of using pharmaco-fUS imaging on cognitive disorders, both in frequent and rare neurological disorders.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Animais , Camundongos , Humanos , Indanos/farmacologia , Acetilcolinesterase/uso terapêutico , Piperidinas/farmacologia , Donepezila/farmacologia , Donepezila/uso terapêutico , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Escopolamina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Proteína FUS de Ligação a RNA
5.
Front Neurosci ; 16: 865140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401075

RESUMO

Attention-Deficit hyperactivity disorder (ADHD) is a central nervous system (CNS) disorder frequently associated with other psychiatric disorders. Pathophysiology processes at stake in ADHD are still under investigation and interestingly neuroimaging data points to modulated brain connectivity in patients. The genetic spontaneously hypertensive rat (SHR) model has been widely used to study pathophysiological underpinnings of ADHD and resting-state brain connectivity using functional magnetic resonance imaging. Here, functional ultrasound imaging, a new technique enabling fast measurement of cerebral blood volume (CBV), was used to further characterize resting-state functional connectivity - at both local and long-range - and visual response in SHR. We demonstrated that response to visual stimulation was increased in SHR in the visual cortex and the superior colliculus. They displayed altered long-range functional connectivity between spatially distinct regions. SHR also displayed modulated local connectivity, with strong increases of regional homogeneity in parts of the motor and visual cortex, along with decreases in the secondary cingulate cortex, the superior colliculus and the pretectal area. As CBV is intricately coupled to cerebral activity, these results suggest an abnormal neural activity in the SHR animal model, consistent with previous clinical studies and demonstrate the potential of functional ultrasound imaging as a translational tool in ADHD.

6.
J Parkinsons Dis ; 11(3): 1257-1269, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33998548

RESUMO

BACKGROUND: The gold-standard treatment for Parkinson's disease is L-DOPA, which in the long term often leads to levodopa-induced dyskinesia. Serotonergic neurons are partially responsible for this, by converting L-DOPA into dopamine leading to its uncontrolled release as a "false neurotransmitter". The stimulation of 5-HT1A receptors can reduce involuntary movements but this mechanism is poorly understood. OBJECTIVE: This study aimed to investigate the functionality of 5-HT1A receptors using positron emission tomography in hemiparkinsonian rats with or without dyskinesia induced by 3-weeks daily treatment with L-DOPA. Imaging sessions were performed "off" L-DOPA. METHODS: Each rat underwent a positron emission tomography scan with [18F]F13640, a 5-HT1AR agonist which labels receptors in a high affinity state for agonists, or with [18F]MPPF, a 5-HT1AR antagonist which labels all the receptors. RESULTS: There were decreases of [18F]MPPF binding in hemiparkinsonian rats in cortical areas. In dyskinetic animals, changes were slighter but also found in other regions. In hemiparkinsonian rats, [18F]F13640 uptake was decreased bilaterally in the globus pallidus and thalamus. On the non-lesioned side, binding was increased in the insula, the hippocampus and the amygdala. In dyskinetic animals, [18F]F13640 binding was strongly increased in cortical and limbic areas, especially in the non-lesioned side. CONCLUSION: These data suggest that agonist and antagonist 5-HT1A receptor-binding sites are differently modified in Parkinson's disease and levodopa-induced dyskinesia. In particular, these observations suggest a substantial involvement of the functional state of 5-HT1AR in levodopa-induced dyskinesia and emphasize the need to characterize this state using agonist radiotracers in physiological and pathological conditions.


Assuntos
Discinesia Induzida por Medicamentos , Doença de Parkinson , Receptor 5-HT1A de Serotonina , Agonistas do Receptor 5-HT1 de Serotonina , Antagonistas do Receptor 5-HT1 de Serotonina , Animais , Antiparkinsonianos/toxicidade , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/metabolismo , Levodopa/toxicidade , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Ratos , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/metabolismo
7.
Front Neurosci ; 15: 622423, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33762906

RESUMO

INTRODUCTION: Serotonin is involved in a variety of physiological functions and brain disorders. In this context, efforts have been made to investigate the in vivo fluctuations of this neurotransmitter using positron emission tomography (PET) imaging paradigms. Since serotonin is a full agonist, it binds preferentially to G-protein coupled receptors. In contrast, antagonist PET ligands additionally interact with uncoupled receptors. This could explain the lack of sensitivity to serotonin fluctuations of current 5-HT1A radiopharmaceuticals which are mainly antagonists and suggests that agonist radiotracers would be more appropriate to measure changes in neurotransmitter release. The present study evaluated the sensitivity to endogenous serotonin release of a recently developed, selective 5-HT1A receptor PET radiopharmaceutical, the agonist [18F]F13640 (a.k.a. befiradol or NLX-112). MATERIALS AND METHODS: Four cats each underwent three PET scans with [18F]F13640, i.e., a control PET scan of 90 min, a PET scan preceded 30 min before by an intravenous injection 1 mg/kg of d-fenfluramine, a serotonin releaser (blocking challenge), and a PET scan comprising the intravenous injection of 1 mg/kg of d-fenfluramine 30 min after the radiotracer injection (displacement challenge). Data were analyzed with regions of interest and voxel-based approaches. A lp-ntPET model approach was implemented to determine the dynamic of serotonin release during the challenge study. RESULTS: D-fenfluramine pretreatment elicited a massive inhibition of [18F]F13640 labeling in regions known to express 5-HT1A receptors, e.g., raphe nuclei, hippocampus, thalamus, anterior cingulate cortex, caudate putamen, occipital, frontal and parietal cortices, and gray matter of cerebellum. Administration of d-fenfluramine during PET acquisition indicates changes in occupancy from 10% (thalamus) to 31% (gray matter of cerebellum) even though the dissociation rate of [18F]F13640 over the 90 min acquisition time was modest. The lp-ntPET simulation succeeded in differentiating the control and challenge conditions. CONCLUSION: The present findings demonstrate that labeling of 5-HT1A receptors with [18F]F13640 is sensitive to serotonin concentration fluctuations in vivo. Although the data underline the need to perform longer PET scan to ensure accurate measure of displacement, they support clinical development of [18F]F13640 as a tool to explore experimental paradigms involving physiological or pathological (neurological or neuropsychiatric pathologies) fluctuations of extracellular serotonin.

8.
J Neurosci Methods ; 355: 109139, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33741345

RESUMO

BACKGROUND: Recent advances using functional ultrasound (fUS) imaging have opened new avenues to evaluate brain activity through the regional monitoring of cerebral blood volume (CBV) dynamics. In particular, this technology paves the way for understanding physiological or pathological cerebral processes or exploring the pharmacological profiles of new drugs targeting brain disorders. One of the main difficulties of this technology is the lack of standardized and validated tools, in particular relevant brain atlases, to help improving the accuracy, automation and reproducibility of fUS data analysis. NEW METHOD: Here, we demonstrate the possibility to use the MRI-validated SIGMA brain atlas in rat to perform fast and precise analysis of CBV changes in numerous functionally relevant regions of interest using fUS imaging. We applied this atlas to a dataset obtained in anesthetized rats evaluating the cerebral effects of atomoxetine, a norepinephrine reuptake inhibitor currently marketed in attention-deficit/hyperactivity-disorder. RESULTS: This approach enabled to show the subregional effects of atomoxetine in the rat with very few inter-individual differences in some areas, such as the dentate gyrus. CONCLUSIONS: We show the feasibility of inter-individual registration of 2D pharmaco-fUS data and subsequent detailed analysis using the SIGMA atlas.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Animais , Encéfalo/diagnóstico por imagem , Neuroimagem , Ratos , Reprodutibilidade dos Testes , Ultrassonografia
9.
Front Neurosci ; 14: 835, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903470

RESUMO

Donepezil is a potent acetylcholinesterase inhibitor, largely used worldwide to alleviate cognitive symptoms in Alzheimer's disease (AD). Beyond the widely described neuronal impact of donepezil, it was recently shown that targeting connexins, the proteins involved in astrocyte network organization, potentiates donepezil efficacy profile using behavioral tests in AD rodent models. We herein present data demonstrating the potential of functional ultrasound imaging to monitor cerebral activity changes after pharmacological challenge in mice. As an example, we showed that although administration of donepezil or mefloquine alone at low dose had only very limited effects on the signal compared to the baseline, their combination produced marked hemodynamic effects in the hippocampus, in line with previously published behavioral data demonstrating a synergic interaction between both drugs. Thus, the present study provides new perspectives, (i) through the use of pharmaco-fUS, a new non-clinical imaging modality, to move forward drug discovery in AD and (ii) by the profiling of two drug treatments on brain dynamics, one used in AD: donepezil, and the other in development: donepezil combined with mefloquine (THN201) as a modulator of astrocyte network.

10.
Neuropharmacology ; 179: 108273, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32801025

RESUMO

Functional ultrasound (fUS) is a new tool enabling the imaging of brain activity through the regional monitoring of cerebral blood volume (CBV) dynamics. This innovative technique has not yet demonstrated its full potential in pharmacological applications and drug development. In the current proof-of-concept study, the impact of atomoxetine (ATX), a potent norepinephrine reuptake inhibitor and non-stimulant treatment marketed in attention-deficit/hyperactivity-disorder, was evaluated in anesthetized rat using pharmacological functional ultrasound (pharmaco-fUS) at increasing doses (0.3, 1 and 3 mg/kg). Using regions of interest (acute changes of CBV and functional connectivity) or pixel-based (general linear modeling and independent component analysis) analysis, we here demonstrated that ATX consistently displayed a hemodynamic effect in the visual cortex, the dentate gyrus and thalamus, especially visual areas such as lateral posterior thalamic nuclei and lateral geniculate nuclei (LGN). The time profile of ATX effects was dose-dependent, with fastest CBV increases at the highest dose, and longer CBV increases at the intermediate dose. Standardizing the use of pharmaco-fUS could improve our understanding of the mechanism of action of drugs active in the brain and might constitute a new step to move forward in drug development for neurological disorders.


Assuntos
Inibidores da Captação Adrenérgica/metabolismo , Cloridrato de Atomoxetina/metabolismo , Giro Denteado/metabolismo , Tálamo/metabolismo , Ultrassonografia/métodos , Córtex Visual/metabolismo , Inibidores da Captação Adrenérgica/farmacologia , Animais , Cloridrato de Atomoxetina/farmacologia , Giro Denteado/diagnóstico por imagem , Giro Denteado/efeitos dos fármacos , Masculino , Ratos , Ratos Endogâmicos WKY , Tálamo/diagnóstico por imagem , Tálamo/efeitos dos fármacos , Córtex Visual/diagnóstico por imagem , Córtex Visual/efeitos dos fármacos
11.
Front Physiol ; 11: 498, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508679

RESUMO

This paper proposes an innovative method, named b-ntPET, for solving a competition model in PET. The model is built upon the state-of-the-art method called lp-ntPET. It consists in identifying the parameters of the PET kinetic model relative to a reference region that rule the steady state exchanges, together with the identification of four additional parameters defining a displacement curve caused by an endogenous neurotransmitter discharge, or by a competing injected drug targeting the same receptors as the PET tracer. The resolution process of lp-ntPET is however suboptimal due to the use of discretized basis functions, and is very sensitive to noise, limiting its sensitivity and accuracy. Contrary to the original method, our proposed resolution approach first estimates the probability distribution of the unknown parameters using Markov-Chain Monte-Carlo sampling, distributions from which the estimates are then inferred. In addition, and for increased robustness, the noise level is jointly estimated with the parameters of the model. Finally, the resolution is formulated in a Bayesian framework, allowing the introduction of prior knowledge on the parameters to guide the estimation process toward realistic solutions. The performance of our method was first assessed and compared head-to-head with the reference method lp-ntPET using well-controlled realistic simulated data. The results showed that the b-ntPET method is substantially more robust to noise and much more sensitive and accurate than lp-ntPET. We then applied the model to experimental animal data acquired in pharmacological challenge studies and human data with endogenous releases induced by transcranial direct current stimulation. In the drug challenge experiment on cats using [18F]MPPF, a serotoninergic 1A antagonist radioligand, b-ntPET measured a dose response associated with the amount of the challenged injected concurrent 5-HT1A agonist, where lp-ntPET failed. In human [11C]raclopride experiment, contrary to lp-ntPET, b-ntPET successfully detected significant endogenous dopamine releases induced by the stimulation. In conclusion, our results showed that the proposed method b-ntPET has similar performance to lp-ntPET for detecting displacements, but with higher resistance to noise and better robustness to various experimental contexts. These improvements lead to the possibility of detecting and characterizing dynamic drug occupancy from a single PET scan more efficiently.

12.
Nucl Med Biol ; 82-83: 57-63, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32006785

RESUMO

INTRODUCTION: The aim of this study was to perform in-vitro and in-vivo radiopharmacological characterizations of [18F]2FNQ1P, a new PET radiotracer of 5-HT6 receptors, in rat, pig, non-human primate and human tissues. The 5-HT6 receptor is one of the more recently identified serotonin receptors in central nervous system and, because of its role in memory and cognitive processes, is considered as a promising therapeutic target. METHODS: In-vitro autoradiography and saturation binding assays were performed in postmortem brain tissues from rat, pig, non-human primate and human caudate nucleus, completed by serum stability assessment in all species and cerebral radiometabolite and biodistribution studies in rat. RESULTS: In all species, autoradiography data revealed high binding levels of [18F]2FNQ1P in cerebral regions with high 5-HT6 receptor density. Binding was blocked by addition of SB258585 as a specific antagonist. Binding assays provided KD and Bmax values of respectively 1.34 nM and 0.03 pmol·mg-1 in rat, 0.60 nM and 0.04 pmol·mg-1 in pig, 1.38 nM and 0.07 pmol·mg-1 in non-human primate, and 1.39 nM and 0.15 pmol·mg-1 in human caudate nucleus. In rat brain, the proportion of unmetabolized [18F]2FNQ1P was >99% 5 min after iv injection and 89% at 40 min. The biodistribution studies found maximal radioactivity in lungs and kidneys (3.5 ± 1.2% ID/g and 2.0 ± 0.7% ID/g, respectively, 15 min post-injection). CONCLUSION: These radiopharmacological data confirm that [18F]2FNQ1P is a specific radiotracer for molecular imaging of 5-HT6 receptors and suggest that it could be used as a radiopharmaceutical in humans.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores de Serotonina/metabolismo , Animais , Radioisótopos de Flúor/química , Radioisótopos de Flúor/metabolismo , Radioisótopos de Flúor/farmacocinética , Macaca fascicularis , Masculino , Traçadores Radioativos , Radioquímica , Ratos , Reprodutibilidade dos Testes , Suínos , Distribuição Tecidual
13.
Neuropharmacology ; 172: 107867, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31783063

RESUMO

The emerging concept of "biased agonism" denotes the phenomenon whereby agonists can preferentially direct receptor signalling to specific intracellular responses among the different transduction pathways, thus potentially avoiding side effects and improving therapeutic effects. The aim of this study was to investigate biased agonism by using pharmacological magnetic resonance imaging (phMRI). The cerebral blood oxygen level dependent (BOLD) signal changes induced by increasing doses of two serotonin 5-HT1A receptor biased agonists, NLX-112 and NLX-101, were mapped in anaesthetized rats. Although both compounds display high affinity, selectivity and agonist efficacy for 5-HT1A receptors, NLX-101 is known to preferentially activate post-synaptic receptors, whereas NLX-112 targets both pre- and post-synaptic receptors. We used several doses of agonists in order to determine if the regional selectivity of NLX-101 was dose-dependent. NLX-112 and NLX-101 induced different positive and negative hemodynamic changes patterns at equal doses. Importantly, NLX-101 had no significant effect in regions expressing pre-synaptic receptors contrary to NLX-112. NLX-112 also produced higher BOLD changes than NLX-101 in the orbital cortex, the somatosensory cortex, and the magnocellular preoptic nuclei. In other regions such as the retrosplenial cortex and the dorsal thalamus, the drugs had similar effects. In terms of functional connectivity, NLX-112 induced more widespread changes than NLX-101. The present phMRI study demonstrates that two closely-related agonists display notable differences in their hemodynamic "fingerprints". These data support the concept of biased agonism at 5-HT1A receptors and raise the prospect of identifying novel therapeutics which exhibit improved targeting of brain regions implicated in neuropsychiatric disorders. This article is part of the special issue entitled 'Serotonin Research: Crossing Scales and Boundaries'.


Assuntos
Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Receptor 5-HT1A de Serotonina/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Animais , Mapeamento Encefálico , Hemodinâmica/efeitos dos fármacos , Masculino , Consumo de Oxigênio , Piperidinas/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Pré-Sinápticos/efeitos dos fármacos
14.
Front Mol Neurosci ; 12: 255, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31680859

RESUMO

Positron emission tomography (PET) is a molecular imaging modality that enables in vivo exploration of metabolic processes and especially the pharmacology of neuroreceptors. G protein-coupled receptors (GPCRs) play an important role in numerous pathophysiologic disorders of the central nervous system. Thus, they are targets of choice in PET imaging to bring proof concept of change in density in pathological conditions or in pharmacological challenge. At present, most radiotracers are antagonist ligands. In vitro data suggest that properties differ between GPCR agonists and antagonists: antagonists bind to receptors with a single affinity, whereas agonists are characterized by two different affinities: high affinity for receptors that undergo functional coupling to G-proteins, and low affinity for those that are not coupled. In this context, agonist radiotracers may be useful tools to give functional images of GPCRs in the brain, with high sensitivity to neurotransmitter release. Here, we review all existing PET radiotracers used from animals to humans and their role for understanding the ligand-receptor paradigm of GPCR in comparison with corresponding antagonist radiotracers.

15.
ACS Chem Neurosci ; 10(7): 3108-3119, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30576601

RESUMO

Serotonin 5-HT1A receptors constitute an attractive therapeutic target for various psychiatric or neurodegenerative disorders. These receptors are expressed in multiple brain regions on different neuronal populations and can be coupled with distinct G-protein subtypes; such functional diversity complicates the use of 5-HT1A ligands in several pathologies where it would be desirable to stimulate the receptors in a precise region. Therefore, using "biased agonists" able to target specifically certain subpopulations of 5-HT1A receptors would enable achievement of better therapeutic benefit. Several 5-HT1A receptor biased agonists are currently in development, including NLX-101 (aka F15599) and NLX-112 (aka F13640, befiradol), with preclinical data suggesting that they preferentially target different populations of 5-HT1A receptors. However, most previous studies used invasive and regionally limited approaches. In this context, [18F]-fluorodesoxyglucose (FDG)-positron emission tomography (PET) imaging constitutes an interesting technique as it enables noninvasive mapping of the regional brain activity changes following a pharmacological challenge in conscious animals. We report here the evaluation of cerebral glucose metabolism following intraperitoneal injection of different doses of NLX-112 or NLX-101 in conscious or isoflurane-anesthetized rats. The biased agonists produced different metabolic "fingerprints" with distinct regional preferences, consistent with previous studies. At equal doses, the effect of NLX-101 was less marked than NLX-112 in the piriform cortex, in the striatum (in terms of inhibition), and in the pontine nuclei and the cerebellum (in terms of activation); furthermore, only NLX-112 increased the glucose metabolism in the parietal cortex, whereas only NLX-101 induced a clear activation in the colliculi and the frontal cortex, which may be related to its distinctive procognitive profile. Both agonist effects were almost completely unapparent in anesthetized animals, underlining the importance of studying serotonergic neurotransmission in the conscious state. In this regard, [18F]FDG-PET imaging seems very complementary with other functional imaging techniques such as pharmacological MRI.


Assuntos
Encéfalo/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Mapeamento Encefálico , Masculino , Piperidinas/farmacologia , Tomografia por Emissão de Pósitrons , Piridinas/farmacologia , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley
16.
Neuropsychopharmacology ; 43(11): 2310-2319, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30030540

RESUMO

In neuropharmacology, the recent concept of 'biased agonism' denotes the capacity of certain agonists to target-specific intracellular pathways of a given receptor in specific brain areas. In the context of serotonin pharmacotherapy, 5-HT1A receptor-biased agonists could be of great interest in several neuropsychiatric disorders. The aim of this study was to determine whether biased agonists could be differentiated in terms of regional targeting by use of simultaneous functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) brain imaging. We compared two 5-HT1A-biased agonists, NLX-112 and NLX-101, injected at three different doses in anaesthetised cats (n = 4). PET imaging was acquired for 90 min after bolus administration followed by constant infusion of the 5-HT1A radiotracer, [18F]MPPF. Drug occupancy was evaluated after injection at 50 min and BOLD fMRI was simultaneously acquired to evaluate subsequent brain activation patterns. 5-HT1A receptor occupancy was found to be dose-dependent for both agonists, but differed in magnitude and spatial distribution at equal doses with distinct BOLD patterns. Functional connectivity, as measured by BOLD signal temporal correlations between regions, was also differently modified by NLX-112 or NLX-101. Voxel-based correlation analyses between PET and fMRI suggested that NLX-112 stimulates both 5-HT1A autoreceptors and post-synaptic receptors, whereas NLX-101 preferentially stimulates post-synaptic cortical receptors. In cingulate cortex, the agonists induced opposite BOLD signal changes in response to receptor occupancy. These data constitute the first simultaneous exploration of 5-HT1A occupancy and its consequences in terms of brain activation, and demonstrates differential signalling by two 5-HT1A-biased agonists. Combined PET/fMRI represents a powerful tool in neuropharmacology, and opens new ways to address the concept of biased agonism by translational approaches.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/metabolismo , Animais , Gatos , Masculino , Imagem Multimodal/métodos
17.
Brain Struct Funct ; 223(6): 2973-2988, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29730825

RESUMO

Serotonin 1A receptors are known to play an important role in many psychiatric and neurodegenerative disorders. Currently, all available 5-HT1A receptor PET radiopharmaceuticals that are radiolabeled with fluorine-18 are antagonists. As agonists bind preferentially to the high-affinity state of receptors, it would be of great interest to develop agonist radioligands which could provide a measure of the functional 5-HT1A receptors in pathophysiological processes. The 5-HT1A receptor agonist candidates we recently proposed had promising in vitro properties but were not optimal in terms of PET imaging. F13640, a.k.a befiradol or NLX-112, is a 5-HT1A receptor agonist with a high affinity (Ki = 1 nM) and a high selectivity that would be suitable for a potential PET radiopharmaceutical. With propose here the first preclinical evaluation of 18F-F13640. 18F-F13640's nitro-precursor was synthesized and radiolabeled via a fluoro-nucleophilic substitution. Its radiopharmacological characterization included autoradiographic studies, metabolic studies, and in vivo PET scans in rat, cat and non-human primate. Some of the results were compared with the radiotracer 18F-MPPF, a 5-HT1A receptor antagonist. The radiochemical purity of 18F-F13640 was > 98%. In vitro binding pattern was consistent with the 5-HT1A receptor distribution. Metabolic studies revealed that the radiotracer rapidly entered the brain and led to few brain radiometabolites. Although 18F-F13640 in vivo binding was blocked by the 5-HT1A antagonist WAY-100635 and the 5-HT1A agonist 8-OH-DPAT, the distribution pattern was markedly different from antagonist radiotracers in the three species, suggesting it provides novel information on 5-HT1A receptors. Preliminary studies also suggest a high sensitivity of 18F-F13640 to endogenous serotonin release. 18F-F13640 has suitable characteristics for probing in vitro and in vivo the 5-HT1A receptors in high-affinity state. Quantification analyses with kinetic modeling are in progress to prepare the first-in-man study of 18F-F13640.


Assuntos
Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Piperazinas/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Piridinas/farmacocinética , Agonistas do Receptor 5-HT1 de Serotonina/farmacocinética , Animais , Autorradiografia , Ligação Competitiva/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Gatos , Feminino , Técnicas In Vitro , Macaca mulatta , Masculino , Piperazinas/química , Piridinas/química , Ratos , Ratos Sprague-Dawley , Agonistas do Receptor 5-HT1 de Serotonina/química , Especificidade da Espécie , Fatores de Tempo , Distribuição Tecidual/efeitos dos fármacos
18.
J Hum Kinet ; 65: 165-174, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30687428

RESUMO

The aims of this study were to evaluate physical performance of substitute players versus those replaced or completing the entire match, determine physical performance of substitute players across different playing positions and examine variations in match-related running performance in substitute players throughout the entire competitive season. The sample was composed of 943 observations of professional players who participated in the first division of the Spanish League (La Liga) during the 2014-2015 season. The players were divided into three different groups: players who completed the entire match (n = 519), players who were replaced (n = 212) and substitute players (n = 212). Substitute players covered greater distances at medium and high intensity compared to the players who played the entire match and those who were replaced. Position-specific trends indicated that attackers and central midfielder increased the distance covered at high-intensity running compared to their peers who played the whole match. During the competitive season, it was observed that substitute players attained greater match running performance during the mid-season period, allowing them to cover more distance for different variables of running performance compared to the start and end of the season.

19.
Nucl Med Biol ; 55: 1-6, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28917111

RESUMO

INTRODUCTION: Oxytocin plays a major role in the regulation of social interactions in mammals by interacting with the oxytocin receptor (OTR) expressed in the brain. Furthermore, the oxytocin system appears as a possible therapeutic target in autism spectrum disorders and other psychiatric troubles, justifying current pharmacological researches. Since no specific PET radioligand is currently available to image OTR in the brain, the aim of this study was to radiolabel the specific OTR antagonist PF-3274167 and to evaluate [11C]PF-3274167 as a potential PET tracer for OTR in rat brains. METHODS: [11C]PF-3274167 was prepared via the O-methylation of its desmethyl precursor with [11C]methyl iodide. The lipophilicity of the radioactive compound was evaluated by measuring the n-octanol-buffer partition coefficient (logD). Autoradiography experiments were performed on rat brain tissue to evaluate the in vitro distribution of the [11C]PF-3274167. MicroPET experiments were conducted with and without pre-injection of ciclosporin in order to evaluate the influence of the P-glycoprotein (P-gp) on the brain uptake. RESULTS: [11C]PF-3274167 was synthesized with high radiochemical and chemical purities (>95%) and good specific activity. The measured logD was 1.93. In vitro, [11C]PF-3274167 did not show any evidence of specific binding to OTR. PET imaging showed that [11C]PF-3274167 uptake in rat brain was very low in basal conditions but increased significantly after the administration of ciclosporin, suggesting that it is a substrate of the P-gp. In the ciclosporin-pre-injected rat, however, [11C]PF-3274167 distribution did not match with the known distribution of OTR in rats. CONCLUSION: [11C]PF-3274167 is not a suitable tracer for imaging of OTR in rat brain, probably because of a too low affinity for this receptor in addition to a poor brain penetration.


Assuntos
Encéfalo/diagnóstico por imagem , Isótopos de Carbono/química , Tomografia por Emissão de Pósitrons/métodos , Receptores de Ocitocina/metabolismo , Triazóis/química , Animais , Transporte Biológico , Encéfalo/metabolismo , Técnicas de Química Sintética , Masculino , Metilação , Traçadores Radioativos , Radioquímica , Ratos , Ratos Sprague-Dawley , Receptores de Ocitocina/antagonistas & inibidores , Triazóis/síntese química , Triazóis/metabolismo , Triazóis/farmacologia
20.
Neuropharmacology ; 109: 88-95, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27183968

RESUMO

PET imaging studies using 5-HT1A receptor radiotracers show a decreased density of this receptor in hippocampi of patients with Alzheimer's disease (AD) at advanced stages. However, current 5-HT1A receptor radiopharmaceuticals used in neuroimaging are antagonists, thought to bind to 5-HT1A receptors in different functional states (i.e., both the one which displays high affinity for agonists and is thought to mediate receptor activation, as well as the state which has low affinity for agonists). Comparing the PET imaging obtained using an agonist radiotracer, which binds selectively to functional receptors, with the PET imaging obtained using an antagonist radiotracer would therefore provide original information on 5-HT1A receptor impairment during AD. Quantitative autoradiography using [(18)F]F13640 and [(18)F]MPPF, a 5-HT1A agonist and antagonist, respectively, was measured in hippocampi of patients with AD (n = 25, at different Braak stages) and control subjects (n = 9). The neuronal density was measured in the same tissues by NeuN immunohistochemistry. The specific binding of both radiotracers was determined by addition of WAY-100635, a selective 5-HT1A receptor antagonist. The autoradiography distribution of both 5-HT1A PET radiotracers varied across hippocampus regions. The highest binding density was in the pyramidal layer of CA1. Incubation with Gpp(NH)p, a non-hydrolysable analogue of GTP, reduced significantly [(18)F]F13640 binding in hippocampal regions, confirming its preferential interaction with G-coupled receptors, and slightly increased [(18)F]MPPF binding. In the CA1 subfield, [(18)F]F13640 binding was significantly decreased at Braak stages I/II (-19%), Braak stages III/IV (-23%), and Braak stages V/VI (-36%) versus control. In contrast, [(18)F]MPPF binding was statistically reduced only at the most advanced Braak stages V/VI compared to control (-33%). Since [(18)F]F13640 and [(18)F]MPPF can be used in vivo in humans, this neuropharmacological paradigm supports testing the concept of functional imaging using agonist radiopharmaceuticals in future clinical studies.


Assuntos
Doença de Alzheimer/metabolismo , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Autopsia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Piperidinas/metabolismo , Ligação Proteica/fisiologia , Piridinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA