Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
3.
Front Physiol ; 13: 1038064, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467695

RESUMO

The use of cephalopod beaks in ecological and population dynamics studies has allowed major advances of our knowledge on the role of cephalopods in marine ecosystems in the last 60 years. Since the 1960's, with the pioneering research by Malcolm Clarke and colleagues, cephalopod beaks (also named jaws or mandibles) have been described to species level and their measurements have been shown to be related to cephalopod body size and mass, which permitted important information to be obtained on numerous biological and ecological aspects of cephalopods in marine ecosystems. In the last decade, a range of new techniques has been applied to cephalopod beaks, permitting new kinds of insight into cephalopod biology and ecology. The workshop on cephalopod beaks of the Cephalopod International Advisory Council Conference (Sesimbra, Portugal) in 2022 aimed to review the most recent scientific developments in this field and to identify future challenges, particularly in relation to taxonomy, age, growth, chemical composition (i.e., DNA, proteomics, stable isotopes, trace elements) and physical (i.e., structural) analyses. In terms of taxonomy, new techniques (e.g., 3D geometric morphometrics) for identifying cephalopods from their beaks are being developed with promising results, although the need for experts and reference collections of cephalopod beaks will continue. The use of beak microstructure for age and growth studies has been validated. Stable isotope analyses on beaks have proven to be an excellent technique to get valuable information on the ecology of cephalopods (namely habitat and trophic position). Trace element analyses is also possible using beaks, where concentrations are significantly lower than in other tissues (e.g., muscle, digestive gland, gills). Extracting DNA from beaks was only possible in one study so far. Protein analyses can also be made using cephalopod beaks. Future challenges in research using cephalopod beaks are also discussed.

5.
Mol Phylogenet Evol ; 155: 106972, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33035681

RESUMO

A central question in the evolution of life-histories is whether organisms reproduce once or repeatedly. For cephalopods, the main differences between semelparous and iteroparous are based on ovulation pattern and spawning type. The different reproductive strategies in coleoid cephalopods could be related to the habitat in which the species dwell (coastal vs. oceanic) and/or to environmental forces, thus, both aspects should be quantitatively evaluated under an evolutionary perspective to reconstruct: (a) the ancestral ovulation type of coleoid cephalopods, and (b) the potential of correlated evolution between ovulation type versus habitat and environment. Ancestral states of ovulation type were estimated using stochastic mapping based on literature data (i.e. synchronous or asynchronous), and this information was combined with a new molecular phylogeny including 165 species. The evolutionary correlation between ovulation type, habitat, and environment was estimated by means of the Markov model comparing the rates of gain and loss. The estimates of ancestral states of ovulation type for coleoid cephalopods resulted in a high probability that Octopodiformes evolved from synchronous ovulation type, and Decapodiformes from asynchronous ovulation type. The three traits evaluated presented phylogenetic signal, although no correlation was found between habitat and ovulation type. Overall, species in stable environments showed a tendency towards synchronous ovulation type, while the asynchronous ovulation pattern was found more frequently in species that live in unstable environments, being this last trait also responsible for triggering the change of ovulation type in some species throughout evolution.


Assuntos
Cefalópodes/classificação , Cefalópodes/fisiologia , Filogenia , Animais , Ecossistema , Feminino , Modelos Teóricos , Ovulação/fisiologia , Reprodução/fisiologia
6.
BMC Dev Biol ; 20(1): 7, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32299349

RESUMO

BACKGROUND: Octopus vulgaris has been an iconic cephalopod species for neurobiology research as well as for cephalopod aquaculture. It is one of the most intelligent and well-studied invertebrates, possessing both long- and short-term memory and the striking ability to perform complex cognitive tasks. Nevertheless, how the common octopus developed these uncommon features remains enigmatic. O. vulgaris females spawn thousands of small eggs and remain with their clutch during their entire development, cleaning, venting and protecting the eggs. In fact, eggs incubated without females usually do not develop normally, mainly due to biological contamination (fungi, bacteria, etc.). This high level of parental care might have hampered laboratory research on the embryonic development of this intriguing cephalopod. RESULTS: Here, we present a completely parameter-controlled artificial seawater standalone egg incubation system that replaces maternal care and allows successful embryonic development of a small-egged octopus species until hatching in a laboratory environment. We also provide a practical and detailed staging atlas based on bright-field and light sheet fluorescence microscopy imaging for precise monitoring of embryonic development. The atlas has a comparative section to benchmark stages to the different scales published by Naef (1928), Arnold (1965) and Boletzky (2016). Finally, we provide methods to monitor health and wellbeing of embryos during organogenesis. CONCLUSION: Besides introducing the study of O. vulgaris embryonic development to a wider community, this work can be a high-quality reference for comparative evolutionary developmental biology.


Assuntos
Octopodiformes/embriologia , Animais , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Feminino , Microscopia de Fluorescência
8.
Front Physiol ; 10: 1558, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31956313

RESUMO

This study examines the relationship between morphology and predatory behaviors to evaluate the ontogeny of the specialized tentacular strike (TS) in Doryteuthis opalescens squid reared under laboratory conditions [hatching to 80 day-old; 2-16 mm mantle length (ML)]. Ontogenetic morphological changes in the arm-crown and the role played by the arms and tentacles during predatory behavior was correlated with prey types captured and revealed interconnected morphological and behavior traits that enabled paralarvae to perform the TS. Hatchlings have a poorly developed arm-crown and tentacles that resemble and function as arms, in which tentacular clubs (suckerfull non-contractile portion) and stalks (suckerless contractile portion) have not yet formed. Only a basic attack (BA) behavior was observed, involving arms and tentacles, which were not ejected during prey capture. A more elaborated behavior, the arm-net (AN) was first employed by 30 day-old (>4.7 mm ML) paralarvae, in which the tentacles were eject down, but not toward the prey. The TS was first observed in 40-50 day-old (6.7-7.8 mm ML) squid, which stay stationary by sustainable swimming prior to ejecting the tentacles toward the prey. Thus, the ability to perform sustainable swimming and acquisition of swimming coordination (schooling behavior) are prerequisites for the expression of the TS. The arms played the same roles after prey was captured: hold, subdue and manipulate the prey, while the actions performed by the tentacles truly defined each behavior. Prey size captured increased with increasing squid size. Morphometric data showed that hatchlings have little ability of elongating their tentacles, but this ability increases significantly with size. Squid older than 40 days could elongate their tentacles up to 61% of their ML, whereas early paralarvae 13% on average. Paralarvae were frequently observed elongating and contracting their tentacles, while not attempting to capture prey, which could perhaps serve to adjust muscle activity and development, while specializations for the strike - stalks, clubs, muscle fibers, arm-crown and swimming coordination - are still being developed. The expression of the TS is constrained by development in early paralarvae as it involves interdependency of morphology and behavior and as such, represents a major developmental milestone in the early life history of squid.

9.
Front Physiol ; 9: 954, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083106

RESUMO

This study investigates the development of swimming abilities and its relationship with morphology, growth, and nourishment of reared Doryteuthis opalescens paralarvae from hatching to 60 days of age. Paralarvae (2.5-11 mm mantle length - ML) were videotaped, and their behavior quantified throughout development using computerized motion analysis. Hatchlings swim dispersed maintaining large nearest neighbor distances (NND, 8.7 ML), with swimming speeds (SS) of 3-8 mm s-1 and paths with long horizontal displacements, resulting in high net to gross displacement ratios (NGDR). For 15-day-old paralarvae, swimming paths are more consistent between jets, growth of fins, length, and mass increases. The swimming pattern of 18-day-old paralarvae starved for 72 h exhibited a significant reduction in mean SS and inability to perform escape jets. A key morphological, behavioral, and ecological transition occurs at about 6 mm ML (>35-day old), when there is a clear change in body shape, swimming performance, and behavior, paths are more regularly repeated and directional swimming is evident, suggesting that morphological changes incur in swimming performance. These squid are able to perform sustained swimming and hover against a current at significantly closer NND (2.0 ML), as path displacement is reduced and maneuverability increases. As paralarvae reach 6-7 mm ML, they are able to attain speeds up to 562 mm s-1 and to form schools. Social feeding interactions (kleptoparasitism) are often observed prior to the formation of schools. Schools are always formed within areas of high flow gradient in the tanks and are dependent on squid size and current speed. Fin development is a requisite for synchronized and maneuverable swimming of schooling early juveniles. Although average speeds of paralarvae are within intermediate Reynolds numbers (Re < 100), they make the transition to the inertia-dominated realm during escape jets of high propulsion (Re > 3200), transitioning from plankton to nekton after their first month of life. The progressive development of swimming capabilities and social interactions enable juvenile squid to school, while also accelerates learning, orientation and cognition. These observations indicate that modeling of the lifecycle should include competency to exert influence over small currents and dispersal patterns after the first month of life.

10.
PLoS One ; 11(11): e0165334, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27829039

RESUMO

Cephalopods (nautiluses, cuttlefishes, squids and octopuses) exhibit direct development and display two major developmental modes: planktonic and benthic. Planktonic hatchlings are small and go through some degree of morphological changes during the planktonic phase, which can last from days to months, with ocean currents enhancing their dispersal capacity. Benthic hatchlings are usually large, miniature-like adults and have comparatively reduced dispersal potential. We examined the relationship between early developmental mode, hatchling size and species latitudinal distribution range of 110 species hatched in the laboratory, which represent 13% of the total number of live cephalopod species described to date. Results showed that species with planktonic hatchlings reach broader distributional ranges in comparison with species with benthic hatchlings. In addition, squids and octopods follow an inverse relationship between hatchling size and species latitudinal distribution. In both groups, species with smaller hatchlings have broader latitudinal distribution ranges. Thus, squid and octopod species with larger hatchlings have latitudinal distributions of comparatively minor extension. This pattern also emerges when all species are grouped by genus (n = 41), but was not detected for cuttlefishes, a group composed mainly of species with large and benthic hatchlings. However, when hatchling size was compared to adult size, it was observed that the smaller the hatchlings, the broader the latitudinal distributional range of the species for cuttlefishes, squids and octopuses. This was also valid for all cephalopod species with benthic hatchlings pooled together. Hatchling size and associated developmental mode and dispersal potential seem to be main influential factors in determining the distributional range of cephalopods.


Assuntos
Distribuição Animal , Cefalópodes/crescimento & desenvolvimento , Tamanho da Ninhada , Estágios do Ciclo de Vida , Animais , Cefalópodes/classificação , Feminino , Masculino , Reprodução , Especificidade da Espécie , Fatores de Tempo
11.
Adv Mar Biol ; 67: 1-98, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24880794

RESUMO

A recent revival in using cephalopods as experimental animals has rekindled interest in their biology and life cycles, information with direct applications also in the rapidly growing ornamental aquarium species trade and in commercial aquaculture production for human consumption. Cephalopods have high rates of growth and food conversion, which for aquaculture translates into short culture cycles, high ratios of production to biomass and high cost-effectiveness. However, at present, only small-scale culture is possible and only for a few species: the cuttlefish Sepia officinalis, the loliginid squid Sepioteuthis lessoniana and the octopuses Octopus maya and O. vulgaris. These four species are the focus of this chapter, the aims of which are as follows: (1) to provide an overview of the culture requirements of cephalopods, (2) to highlight the physical and nutritional requirements at each phase of the life cycle regarded as essential for successful full-scale culture and (3) to identify current limitations and the topics on which further research is required. Knowledge of cephalopod culture methods is advanced, but commercialization is still constrained by the highly selective feeding habits of cephalopods and their requirement for large quantities of high-quality (preferably live) feed, particularly in the early stages of development. Future research should focus on problems related to the consistent production of viable numbers of juveniles, the resolution of which requires a better understanding of nutrition at all phases of the life cycle and better broodstock management, particularly regarding developments in genetic selection, control of reproduction and quality of eggs and offspring.


Assuntos
Criação de Animais Domésticos/métodos , Cefalópodes/fisiologia , Pesquisa , Criação de Animais Domésticos/normas , Fenômenos Fisiológicos da Nutrição Animal , Animais
12.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA