Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
ACS Chem Neurosci ; 15(7): 1581-1595, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38523263

RESUMO

Aggregated species of amyloid-ß (Aß) are one of the pathological hallmarks in Alzheimer's disease (AD), and ligands that selectively target different Aß deposits are of great interest. In this study, fluorescent thiophene-based ligands have been used to illustrate the features of different types of Aß deposits found in AD brain tissue. A dual-staining protocol based on two ligands, HS-276 and LL-1, with different photophysical and binding properties, was developed and applied on brain tissue sections from patients affected by sporadic AD or familial AD associated with the PSEN1 A431E mutation. When binding to Aß deposits, the ligands could easily be distinguished for their different fluorescence, and distinct staining patterns were revealed for these two types of AD. In sporadic AD, HS-276 consistently labeled all immunopositive Aß plaques, whereas LL-1 mainly stained cored and neuritic Aß deposits. In the PSEN1 A431E cases, each ligand was binding to specific types of Aß plaques. The ligand-labeled Aß deposits were localized in distinct cortical layers, and a laminar staining pattern could be seen. Biochemical characterization of the Aß aggregates in the individual layers also showed that the variation of ligand binding properties was associated with certain Aß peptide signatures. For the PSEN1 A431E cases, it was concluded that LL-1 was binding to cotton wool plaques, whereas HS-276 mainly stained diffuse Aß deposits. Overall, our findings showed that a combination of ligands was essential to identify distinct aggregated Aß species associated with different forms of AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Tiofenos/química , Ligantes , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Placa Amiloide/metabolismo
2.
Nat Struct Mol Biol ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553642

RESUMO

Adult individuals with Down syndrome (DS) develop Alzheimer disease (AD). Whether there is a difference between AD in DS and AD regarding the structure of amyloid-ß (Aß) and tau filaments is unknown. Here we report the structure of Aß and tau filaments from two DS brains. We found two Aß40 filaments (types IIIa and IIIb) that differ from those previously reported in sporadic AD and two types of Aß42 filaments (I and II) identical to those found in sporadic and familial AD. Tau filaments (paired helical filaments and straight filaments) were identical to those in AD, supporting the notion of a common mechanism through which amyloids trigger aggregation of tau. This knowledge is important for understanding AD in DS and assessing whether adults with DS could be included in AD clinical trials.

3.
Nature ; 625(7994): 345-351, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057661

RESUMO

Frontotemporal lobar degeneration (FTLD) causes frontotemporal dementia (FTD), the most common form of dementia after Alzheimer's disease, and is often also associated with motor disorders1. The pathological hallmarks of FTLD are neuronal inclusions of specific, abnormally assembled proteins2. In the majority of cases the inclusions contain amyloid filament assemblies of TAR DNA-binding protein 43 (TDP-43) or tau, with distinct filament structures characterizing different FTLD subtypes3,4. The presence of amyloid filaments and their identities and structures in the remaining approximately 10% of FTLD cases are unknown but are widely believed to be composed of the protein fused in sarcoma (FUS, also known as translocated in liposarcoma). As such, these cases are commonly referred to as FTLD-FUS. Here we used cryogenic electron microscopy (cryo-EM) to determine the structures of amyloid filaments extracted from the prefrontal and temporal cortices of four individuals with FTLD-FUS. Surprisingly, we found abundant amyloid filaments of the FUS homologue TATA-binding protein-associated factor 15 (TAF15, also known as TATA-binding protein-associated factor 2N) rather than of FUS itself. The filament fold is formed from residues 7-99 in the low-complexity domain (LCD) of TAF15 and was identical between individuals. Furthermore, we found TAF15 filaments with the same fold in the motor cortex and brainstem of two of the individuals, both showing upper and lower motor neuron pathology. The formation of TAF15 amyloid filaments with a characteristic fold in FTLD establishes TAF15 proteinopathy in neurodegenerative disease. The structure of TAF15 amyloid filaments provides a basis for the development of model systems of neurodegenerative disease, as well as for the design of diagnostic and therapeutic tools targeting TAF15 proteinopathy.


Assuntos
Degeneração Lobar Frontotemporal , Fatores Associados à Proteína de Ligação a TATA , Humanos , Amiloide/química , Amiloide/metabolismo , Amiloide/ultraestrutura , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Microscopia Crioeletrônica , Demência Frontotemporal/etiologia , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/complicações , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Córtex Motor/metabolismo , Córtex Motor/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Fatores Associados à Proteína de Ligação a TATA/química , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fatores Associados à Proteína de Ligação a TATA/ultraestrutura , Lobo Temporal/metabolismo , Lobo Temporal/patologia
4.
J Am Chem Soc ; 145(42): 23131-23142, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37844142

RESUMO

The aggregation of misfolded tau into neurotoxic fibrils is linked to the progression of Alzheimer's disease (AD) and related tauopathies. Disease-associated conformations of filamentous tau are characterized by hydrophobic interactions between side chains on unique and distant ß-strand modules within each protomer. Here, we report the design and diversity-oriented synthesis of ß-arch peptide macrocycles composed of the aggregation-prone PHF6 hexapeptide of tau and the cross-ß module specific to the AD tau fold. Termed "ß-bracelets", these proteomimetics assemble in a sequence- and macrocycle-dependent fashion, resulting in amyloid-like fibrils that feature in-register parallel ß-sheet structure. Backbone N-amination of a selected ß-bracelet affords soluble inhibitors of tau aggregation. We further demonstrate that the N-aminated macrocycles block the prion-like cellular seeding activity of recombinant tau as well as mature fibrils from AD patient extracts. These studies establish ß-bracelets as a new class of cross-ß epitope mimics and demonstrate their utility in the rational design of molecules targeting amyloid propagation and seeding.


Assuntos
Doença de Alzheimer , Príons , Tauopatias , Humanos , Epitopos , Proteínas tau/química , Peptídeos , Amiloide
5.
Nature ; 620(7975): 898-903, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532939

RESUMO

The abnormal assembly of TAR DNA-binding protein 43 (TDP-43) in neuronal and glial cells characterizes nearly all cases of amyotrophic lateral sclerosis (ALS) and around half of cases of frontotemporal lobar degeneration (FTLD)1,2. A causal role for TDP-43 assembly in neurodegeneration is evidenced by dominantly inherited missense mutations in TARDBP, the gene encoding TDP-43, that promote assembly and give rise to ALS and FTLD3-7. At least four types (A-D) of FTLD with TDP-43 pathology (FTLD-TDP) are defined by distinct brain distributions of assembled TDP-43 and are associated with different clinical presentations of frontotemporal dementia8. We previously showed, using cryo-electron microscopy, that TDP-43 assembles into amyloid filaments in ALS and type B FTLD-TDP9. However, the structures of assembled TDP-43 in FTLD without ALS remained unknown. Here we report the cryo-electron microscopy structures of assembled TDP-43 from the brains of three individuals with the most common type of FTLD-TDP, type A. TDP-43 formed amyloid filaments with a new fold that was the same across individuals, indicating that this fold may characterize type A FTLD-TDP. The fold resembles a chevron badge and is unlike the double-spiral-shaped fold of ALS and type B FTLD-TDP, establishing that distinct filament folds of TDP-43 characterize different neurodegenerative conditions. The structures, in combination with mass spectrometry, led to the identification of two new post-translational modifications of assembled TDP-43, citrullination and monomethylation of R293, and indicate that they may facilitate filament formation and observed structural variation in individual filaments. The structures of TDP-43 filaments from type A FTLD-TDP will guide mechanistic studies of TDP-43 assembly, as well as the development of diagnostic and therapeutic compounds for TDP-43 proteinopathies.


Assuntos
Proteínas de Ligação a DNA , Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Citrulinação , Microscopia Crioeletrônica , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Degeneração Lobar Frontotemporal/classificação , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia , Metilação
6.
Acta Neuropathol ; 146(2): 211-226, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37351604

RESUMO

Two siblings with deletion mutation ∆K281 in MAPT developed frontotemporal dementia. At autopsy, numerous inclusions of hyperphosphorylated 3R Tau were present in neurons and glial cells of neocortex and some subcortical regions, including hippocampus, caudate/putamen and globus pallidus. The inclusions were argyrophilic with Bodian silver, but not with Gallyas-Braak silver. They were not labelled by an antibody specific for tau phosphorylated at S262 and/or S356. The inclusions were stained by luminescent conjugated oligothiophene HS-84, but not by bTVBT4. Electron cryo-microscopy revealed that the core of tau filaments was made of residues K254-F378 of 3R Tau and was indistinguishable from that of Pick's disease. We conclude that MAPT mutation ∆K281 causes Pick's disease.


Assuntos
Demência Frontotemporal , Doença de Pick , Humanos , Doença de Pick/genética , Prata , Proteínas tau/genética , Proteínas tau/química , Demência Frontotemporal/genética , Neurônios , Mutação/genética
8.
Acta Neuropathol ; 145(5): 561-572, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36847833

RESUMO

A 21-nucleotide duplication in one allele of SNCA was identified in a previously described disease with abundant α-synuclein inclusions that we now call juvenile-onset synucleinopathy (JOS). This mutation translates into the insertion of MAAAEKT after residue 22 of α-synuclein, resulting in a protein of 147 amino acids. Both wild-type and mutant proteins were present in sarkosyl-insoluble material that was extracted from frontal cortex of the individual with JOS and examined by electron cryo-microscopy. The structures of JOS filaments, comprising either a single protofilament, or a pair of protofilaments, revealed a new α-synuclein fold that differs from the folds of Lewy body diseases and multiple system atrophy (MSA). The JOS fold consists of a compact core, the sequence of which (residues 36-100 of wild-type α-synuclein) is unaffected by the mutation, and two disconnected density islands (A and B) of mixed sequences. There is a non-proteinaceous cofactor bound between the core and island A. The JOS fold resembles the common substructure of MSA Type I and Type II dimeric filaments, with its core segment approximating the C-terminal body of MSA protofilaments B and its islands mimicking the N-terminal arm of MSA protofilaments A. The partial similarity of JOS and MSA folds extends to the locations of their cofactor-binding sites. In vitro assembly of recombinant wild-type α-synuclein, its insertion mutant and their mixture yielded structures that were distinct from those of JOS filaments. Our findings provide insight into a possible mechanism of JOS fibrillation in which mutant α-synuclein of 147 amino acids forms a nucleus with the JOS fold, around which wild-type and mutant proteins assemble during elongation.


Assuntos
Atrofia de Múltiplos Sistemas , Sinucleinopatias , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Sinucleinopatias/genética , Nigéria , Atrofia de Múltiplos Sistemas/genética , Atrofia de Múltiplos Sistemas/metabolismo , Mutação/genética
9.
bioRxiv ; 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36711790

RESUMO

Background: The Microtubule-Associated Protein Tau (MAPT) is one of the proteins that are central to neurodegenerative diseases. The nature of intracellular tau aggregates is determined by the cell types whether neuronal or glial, the participating tau isoforms, and the structure of the amyloid filament. The transmembrane protein 106B (TMEM106B) has recently emerged as another significant player in neurodegeneration and aging. In the central nervous system, the composition of the gray and white matter differs considerably. The gray matter consists of nerve cell bodies, dendrites, unmyelinated axons, synaptic terminals, astrocytes, oligodendrocytes (satellite cells) and microglia. The white matter differs from the gray for the presence of axonal tracts as the only neuronal component and for the absence of nerve cell bodies, dendrites and synaptic terminals. Cryogenic electron microscopy (cryo-EM) studies have unveiled the structure of tau and TMEM106B, from the cerebral cortex, in several neurodegenerative diseases; however, whether tau and TMEM106B filaments from the gray and white matter share a common fold requires additional investigation. Methods: We isolated tau and TMEM106B from the cerebral cortex and white matter of the frontal lobes of two individuals affected by multiple system tauopathy with presenile dementia (MSTD), a disease caused by the MAPT intron 10 mutation +3. We used immunostaining, biochemical, genetics and cryo-EM methods to characterize tau and TMEM106B. Results: We determined that tau filaments in the gray and the white matter of MSTD individuals can induce tau aggregation and have identical AGD type 2 folds. TMEM106B amyloid filaments were also found in the gray and white matter of MSTD; the filament folds were identical in the two anatomical regions. Conclusions: Our findings show for the first time that in MSTD two types of amyloid filaments extracted from the gray matter have identical folds to those extracted from the white matter. Whether in this genetic disorder there is a relationship in the pathogenesis of the tau and TMEM106B filaments, remains to be determined. Furthermore, additional studies are needed for other proteins and other neurodegenerative diseases to establish whether filaments extracted from the gray and white matter would have identical folds.

10.
Chemistry ; 29(21): e202203568, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-36645413

RESUMO

The aggregation and accumulation of proteins in the brain is the defining feature of many devastating neurodegenerative diseases. The development of fluorescent ligands that bind to these accumulations, or deposits, is essential for the characterization of these neuropathological lesions. We report the synthesis of donor-acceptor-donor (D-A-D) thiophene-based ligands with different emission properties. The D-A-D ligands displayed selectivity towards distinct disease-associated protein deposits in histological sections from postmortem brain tissue of individuals affected by Alzheimer's disease (AD). The ability of the ligands to selectively identify AD-associated pathological alterations, such as deposits composed of aggregates of the amyloid-ß (Aß) peptide or tau, was reduced when the chemical composition of the ligands was altered. When combining the D-A-D ligands with conventional thiophene-based ligands, superior spectral separation of distinct protein aggregates in AD tissue sections was obtained. Our findings provide the structural and functional basis for the development of new fluorescent ligands that can distinguish between aggregated proteinaceous species, as well as offer novel strategies for developing multiplex fluorescence detection of protein aggregates in tissue sections.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Agregados Proteicos , Tiofenos/química , Ligantes , Peptídeos beta-Amiloides/química , Encéfalo/metabolismo , Proteínas tau/metabolismo
11.
J Biol Chem ; 299(1): 102751, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436561

RESUMO

The Apolipoprotein E-ε4 allele (APOE-ε4) is the strongest genetic risk factor for late onset Alzheimer disease (AD). ApoE plays a critical role in amyloid-ß (Aß) accumulation in AD, and genetic deletion of the murine ApoE gene in mouse models results in a decrease or inhibition of Aß deposition. The association between the presence of ApoE and amyloid in amyloidoses suggests a more general role for ApoE in the fibrillogenesis process. However, whether decreasing levels of ApoE would attenuate amyloid pathology in different amyloidoses has not been directly addressed. Familial Danish dementia (FDD) is an autosomal dominant neurodegenerative disease characterized by the presence of widespread parenchymal and vascular Danish amyloid (ADan) deposition and neurofibrillary tangles. A transgenic mouse model for FDD (Tg-FDD) is characterized by parenchymal and vascular ADan deposition. To determine the effect of decreasing ApoE levels on ADan accumulation in vivo, we generated a mouse model by crossing Tg-FDD mice with ApoE KO mice (Tg-FDD+/-/ApoE-/-). Lack of ApoE results in inhibition of ADan deposition up to 18 months of age. Additionally, our results from a genetic screen of Tg-FDD+/-/ApoE-/- mice emphasize the significant role for ApoE in neurodegeneration in FDD via glial-mediated mechanisms. Taken together, our findings suggest that the interaction between ApoE and ADan plays a key role in FDD pathogenesis, in addition to the known role for ApoE in amyloid plaque formation in AD.


Assuntos
Doença de Alzheimer , Amiloidose , Doenças Neurodegenerativas , Camundongos , Animais , Glicoproteínas de Membrana/metabolismo , Doença de Alzheimer/genética , Camundongos Transgênicos , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Amiloidose/genética , Amiloidose/patologia , Amiloide , Apolipoproteínas E/genética , Encéfalo/metabolismo
12.
European J Org Chem ; 26(41)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38585413

RESUMO

Distinct aggregated proteins are correlated with numerous neurodegenerative diseases and the development of ligands that selectively detect these pathological hallmarks is vital. Recently, the synthesis of thiophene-based optical ligands, denoted bi-thiophene-vinyl-benzothiazoles (bTVBTs), that could be utilized for selective assignment of tau pathology in brain tissue with Alzheime's disease (AD) pathology, was reported. Herein, we investigate the ability of these ligands to selectively distinguish tau deposits from aggregated amyloid-ß (Aß), the second AD associated pathological hallmark, when replacing the terminal thiophene moiety with other heterocyclic motifs. The selectivity for tau pathology was reduced when introducing specific heterocyclic motifs, verifying that specific molecular interactions between the ligands and the aggregates are necessary for selective detection of tau deposits. In addition, ligands having certain heterocyclic moieties attached to the central thiophene-vinylene building block displayed selectivity to aggregated Aß pathology. Our findings provide chemical insights for the development of ligands that can distinguish between aggregated proteinaceous species consisting of different proteins and might also aid in creating novel agents for clinical imaging of tau pathology in AD.

13.
Nature ; 610(7933): 791-795, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36108674

RESUMO

Parkinson's disease (PD) is the most common movement disorder, with resting tremor, rigidity, bradykinesia and postural instability being major symptoms1. Neuropathologically, it is characterized by the presence of abundant filamentous inclusions of α-synuclein in the form of Lewy bodies and Lewy neurites in some brain cells, including dopaminergic nerve cells of the substantia nigra2. PD is increasingly recognised as a multisystem disorder, with cognitive decline being one of its most common non-motor symptoms. Many patients with PD develop dementia more than 10 years after diagnosis3. PD dementia (PDD) is clinically and neuropathologically similar to dementia with Lewy bodies (DLB), which is diagnosed when cognitive impairment precedes parkinsonian motor signs or begins within one year from their onset4. In PDD, cognitive impairment develops in the setting of well-established PD. Besides PD and DLB, multiple system atrophy (MSA) is the third major synucleinopathy5. It is characterized by the presence of abundant filamentous α-synuclein inclusions in brain cells, especially oligodendrocytes (Papp-Lantos bodies). We previously reported the electron cryo-microscopy structures of two types of α-synuclein filament extracted from the brains of individuals with MSA6. Each filament type is made of two different protofilaments. Here we report that the cryo-electron microscopy structures of α-synuclein filaments from the brains of individuals with PD, PDD and DLB are made of a single protofilament (Lewy fold) that is markedly different from the protofilaments of MSA. These findings establish the existence of distinct molecular conformers of assembled α-synuclein in neurodegenerative disease.


Assuntos
Química Encefálica , Encéfalo , Microscopia Crioeletrônica , Doença por Corpos de Lewy , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , alfa-Sinucleína/ultraestrutura , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Doença por Corpos de Lewy/patologia , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Demência/complicações , Demência/patologia
14.
Chemistry ; 28(62): e202201557, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-35950816

RESUMO

Protein deposits composed of specific proteins or peptides are associated with several neurodegenerative diseases and fluorescent ligands able to detect these pathological hallmarks are vital. Here, we report the synthesis of a class of thiophene-based ligands, denoted proteophenes, with different amino acid side-chain functionalities along the conjugated backbone, which display selectivity towards specific disease-associated protein aggregates in tissue sections with Alzheimer's disease (AD) pathology. The selectivity of the ligands towards AD associated pathological hallmarks, such as aggregates of the amyloid-ß (Aß) peptide or tau filamentous inclusions, was highly dependent on the chemical nature of the amino acid functionality, as well as on the location of the functionality along the pentameric thiophene backbone. Finally, the concept of synthesizing donor-acceptor-donor proteophenes with distinct photophysical properties was shown. Our findings provide the structural and functional basis for the development of new thiophene-based ligands that can be utilized for optical assignment of different aggregated proteinaceous species in tissue sections.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Tiofenos/química , Aminoácidos , Corantes Fluorescentes/química , Peptídeos beta-Amiloides/química , Ligantes , Proteínas tau
15.
Neuropathol Appl Neurobiol ; 48(6): e12836, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35836354

RESUMO

AIMS: Frontotemporal dementias are neuropathologically characterised by frontotemporal lobar degeneration (FTLD). Intraneuronal inclusions of transactive response DNA-binding protein 43 kDa (TDP-43) are the defining pathological hallmark of approximately half of the FTLD cases, being referred to as FTLD-TDP. The classification of FTLD-TDP into five subtypes (Type A to Type E) is based on pathologic phenotypes; however, the molecular determinants underpinning the phenotypic heterogeneity of FTLD-TDP are not well known. It is currently undetermined whether TDP-43 post-translational modifications (PTMs) may be related to the phenotypic diversity of the FTLDs. Thus, the investigation of FTLD-TDP Type A and Type B, associated with GRN and C9orf72 mutations, becomes essential. METHODS: Immunohistochemistry was used to identify and map the intraneuronal inclusions. Sarkosyl-insoluble TDP-43 was extracted from brains of GRN and C9orf72 mutation carriers post-mortem and studied by Western blot analysis, immuno-electron microscopy and mass spectrometry. RESULTS: Filaments of TDP-43 were present in all FTLD-TDP preparations. PTM profiling identified multiple phosphorylated, N-terminal acetylated or otherwise modified residues, several of which have been identified for the first time as related to sarkosyl-insoluble TDP-43. Several PTMs were specific for either Type A or Type B, while others were identified in both types. CONCLUSIONS: The current results provide evidence that the intraneuronal inclusions in the two genetic diseases contain TDP-43 filaments. The discovery of novel, potentially type-specific TDP-43 PTMs emphasises the need to determine the mechanisms leading to filament formation and PTMs, and the necessity of exploring the validity and occupancy of PTMs in a prognostic/diagnostic setting.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Degeneração Lobar Frontotemporal/patologia , Humanos , Progranulinas/genética , Progranulinas/metabolismo , Processamento de Proteína Pós-Traducional
16.
Acta Neuropathol ; 144(3): 509-520, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35819518

RESUMO

Prion protein (PrP) aggregation and formation of PrP amyloid (APrP) are central events in the pathogenesis of prion diseases. In the dominantly inherited prion protein amyloidosis known as Gerstmann-Sträussler-Scheinker (GSS) disease, plaques made of PrP amyloid are present throughout the brain. The c.593t > c mutation in the prion protein gene (PRNP) results in a phenylalanine to serine amino acid substitution at PrP residue 198 (F198S) and causes the most severe amyloidosis among GSS variants. It has been shown that neurodegeneration in this disease is associated with the presence of extracellular APrP plaques and neuronal intracytoplasmic Tau inclusions, that have been shown to contain paired helical filaments identical to those found in Alzheimer disease. Using cryogenic electron microscopy (cryo-EM), we determined for the first time the structures of filaments of human APrP, isolated post-mortem from the brain of two symptomatic PRNP F198S mutation carriers. We report that in GSS (F198S) APrP filaments are composed of dimeric, trimeric and tetrameric left-handed protofilaments with their protomers sharing a common protein fold. The protomers in the cross-ß spines consist of 62 amino acids and span from glycine 80 to phenylalanine 141, adopting a previously unseen spiral fold with a thicker outer layer and a thinner inner layer. Each protomer comprises nine short ß-strands, with the ß1 and ß8 strands, as well as the ß4 and ß9 strands, forming a steric zipper. The data obtained by cryo-EM provide insights into the structural complexity of the PrP filament in a dominantly inherited human PrP amyloidosis. The novel findings highlight the urgency of extending our knowledge of the filaments' structures that may underlie distinct clinical and pathologic phenotypes of human neurodegenerative diseases.


Assuntos
Amiloidose , Doença de Gerstmann-Straussler-Scheinker , Príons , Amiloide/metabolismo , Amiloidose/metabolismo , Encéfalo/patologia , Microscopia Crioeletrônica , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Humanos , Fenilalanina/metabolismo , Placa Amiloide/patologia , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética , Príons/metabolismo , Subunidades Proteicas/metabolismo
17.
Commun Biol ; 5(1): 282, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35351973

RESUMO

Reactive astrogliosis is a universal response of astrocytes to abnormal events and injuries. Studies have shown that proinflammatory microglia can polarize astrocytes (designated A1 astrocytes) toward a neurotoxic phenotype characterized by increased Complement Component 3 (C3) expression. It is still unclear if inflammatory stimuli from other cell types may also be capable of inducing a subset of C3+ neurotoxic astrocytes. Here, we show that a subtype of C3+ neurotoxic astrocytes is induced by activated endothelial cells that is distinct from astrocytes activated by microglia. Furthermore, we show that endothelial-induced astrocytes have upregulated expression of A1 astrocytic genes and exhibit a distinctive extracellular matrix remodeling profile. Finally, we demonstrate that endothelial-induced astrocytes are Decorin-positive and are associated with vascular amyloid deposits but not parenchymal amyloid plaques in mouse models and AD/CAA patients. These findings demonstrate the existence of potentially extensive and subtle functional diversity of C3+-reactive astrocytes.


Assuntos
Astrócitos , Células Endoteliais , Animais , Astrócitos/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos , Microglia/metabolismo , Placa Amiloide
18.
Nature ; 605(7909): 310-314, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344985

RESUMO

Many age-dependent neurodegenerative diseases, such as Alzheimer's and Parkinson's, are characterized by abundant inclusions of amyloid filaments. Filamentous inclusions of the proteins tau, amyloid-ß, α-synuclein and transactive response DNA-binding protein (TARDBP; also known as TDP-43) are the most common1,2. Here we used structure determination by cryogenic electron microscopy to show that residues 120-254 of the lysosomal type II transmembrane protein 106B (TMEM106B) also form amyloid filaments in human brains. We determined the structures of TMEM106B filaments from a number of brain regions of 22 individuals with abundant amyloid deposits, including those resulting from sporadic and inherited tauopathies, amyloid-ß amyloidoses, synucleinopathies and TDP-43 proteinopathies, as well as from the frontal cortex of 3 individuals with normal neurology and no or only a few amyloid deposits. We observed three TMEM106B folds, with no clear relationships between folds and diseases. TMEM106B filaments correlated with the presence of a 29-kDa sarkosyl-insoluble fragment and globular cytoplasmic inclusions, as detected by an antibody specific to the carboxy-terminal region of TMEM106B. The identification of TMEM106B filaments in the brains of older, but not younger, individuals with normal neurology indicates that they form in an age-dependent manner.


Assuntos
Envelhecimento , Amiloide , Amiloidose , Encéfalo , Proteínas de Membrana , Proteínas do Tecido Nervoso , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Encéfalo/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Placa Amiloide/metabolismo , Tauopatias/metabolismo , Proteínas tau/metabolismo
19.
Science ; 375(6577): 167-172, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35025654

RESUMO

Filament assembly of amyloid-ß peptides ending at residue 42 (Aß42) is a central event in Alzheimer's disease. Here, we report the cryo­electron microscopy (cryo-EM) structures of Aß42 filaments from human brains. Two structurally related S-shaped protofilament folds give rise to two types of filaments. Type I filaments were found mostly in the brains of individuals with sporadic Alzheimer's disease, and type II filaments were found in individuals with familial Alzheimer's disease and other conditions. The structures of Aß42 filaments from the brain differ from those of filaments assembled in vitro. By contrast, in AppNL-F knock-in mice, Aß42 deposits were made of type II filaments. Knowledge of Aß42 filament structures from human brains may lead to the development of inhibitors of assembly and improved imaging agents.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/ultraestrutura , Química Encefálica , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/ultraestrutura , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Peptídeos beta-Amiloides/genética , Animais , Microscopia Crioeletrônica , Feminino , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Animais , Modelos Moleculares , Fragmentos de Peptídeos/genética , Conformação Proteica , Conformação Proteica em Folha beta , Domínios Proteicos , Dobramento de Proteína
20.
J Phys Chem B ; 125(42): 11628-11636, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34643404

RESUMO

The bi-thiophene-vinylene-benzothiazole (bTVBT4) ligand developed for Alzheimer's disease (AD)-specific detection of amyloid tau has been studied by a combination of several theoretical methods and experimental spectroscopies. With reference to the cryo-EM tau structure of the tau protofilament ( Nature 2017, 547, 185), a periodic model system of the fibril was created, and the interactions between this fibril and bTVBT4 were studied with nonbiased molecular dynamics simulations. Several binding sites and binding modes were identified and analyzed, and the results for the most prevailing fibril site and ligand modes are presented. A key validation of the simulation work is provided by the favorable comparison of the theoretical and experimental absorption spectra of bTVBT4 in solution and bound to the protein. It is conclusively shown that the ligand-protein binding occurs at the hydrophobic pocket defined by the residues Ile360, Thr361, and His362. This binding site is not accessible in the Pick's disease (PiD) fold, and fluorescence imaging of bTVBT4-stained brain tissue samples from patients diagnosed with AD and PiD provides strong support for the proposed tau binding site.


Assuntos
Doença de Alzheimer , Doença de Pick , Humanos , Ligantes , Ligação Proteica , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA