Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Cells ; 13(2)2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38247817

RESUMO

The membrane (M) glycoprotein of coronaviruses (CoVs) serves as the nidus for virion assembly. Using a yeast two-hybrid screen, we identified the interaction of the cytosolic tail of Murine Hepatitis Virus (MHV-CoV) M protein with Myosin Vb (MYO5B), specifically with the alternative splice variant of cellular MYO5B including exon D (MYO5B+D), which mediates interaction with Rab10. When co-expressed in human lung epithelial A549 and canine kidney epithelial MDCK cells, MYO5B+D co-localized with the MHV-CoV M protein, as well as with the M proteins from Porcine Epidemic Diarrhea Virus (PEDV-CoV), Middle East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome 2 (SARS-CoV-2). Co-expressed M proteins and MYO5B+D co-localized with endogenous Rab10 and Rab11a. We identified point mutations in MHV-CoV M that blocked the interaction with MYO5B+D in yeast 2-hybrid assays. One of these point mutations (E121K) was previously shown to block MHV-CoV virion assembly and its interaction with MYO5B+D. The E to K mutation at homologous positions in PEDV-CoV, MERS-CoV and SARS-CoV-2 M proteins also blocked colocalization with MYO5B+D. The knockdown of Rab10 blocked the co-localization of M proteins with MYO5B+D and was rescued by re-expression of CFP-Rab10. Our results suggest that CoV M proteins traffic through Rab10-containing systems, in association with MYO5B+D.


Assuntos
Proteínas M de Coronavírus , Animais , Cães , Humanos , Células Madin Darby de Rim Canino/metabolismo , Células Madin Darby de Rim Canino/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio , Miosinas , Proteínas rab de Ligação ao GTP/genética , Saccharomyces cerevisiae , Suínos , Proteínas da Matriz Viral , SARS-CoV-2/metabolismo , Vírus da Hepatite Murina/metabolismo , Células A549/metabolismo , Células A549/virologia , Vírus da Diarreia Epidêmica Suína/metabolismo
2.
Nat Commun ; 14(1): 8440, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114531

RESUMO

Autophagy receptor NDP52 triggers bacterial autophagy against infection. However, the ability of NDP52 to protect against viral infection has not been established. We show that NDP52 binds to envelope proteins of hepatitis B virus (HBV) and triggers a degradation process that promotes HBV clearance. Inactivating NDP52 in hepatocytes results in decreased targeting of viral envelopes in the lysosome and increased levels of viral replication. NDP52 inhibits HBV at both viral entry and late replication stages. In contrast to NDP52-mediated bacterial autophagy, lysosomal degradation of HBV envelopes is independent of galectin 8 and ATG5. NDP52 forms complex with Rab9 and viral envelope proteins and links HBV to Rab9-dependent lysosomal degradation pathway. These findings reveal that NDP52 acts as a sensor for HBV infection, which mediates a unique antiviral response to eliminate the virus. This work also suggests direct roles for autophagy receptors in other lysosomal degradation pathways than canonical autophagy.


Assuntos
Vírus da Hepatite B , Hepatite B , Humanos , Vírus da Hepatite B/fisiologia , Hepatócitos/metabolismo , Autofagia/fisiologia , Lisossomos/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/metabolismo , Replicação Viral/fisiologia
3.
Med Sci (Paris) ; 39(10): 754-762, 2023 Oct.
Artigo em Francês | MEDLINE | ID: mdl-37943136

RESUMO

Hepatitis viruses modify the cellular metabolism of hepatocytes by interacting with specific enzymes such as glucokinase. The metabolic changes induced by viruses can have a direct impact on the innate antiviral response. The complex interactions between viral components, innate immunity, and hepatocyte metabolism explain why chronic hepatitis infections lead to liver inflammation, progressing to cirrhosis, fibrosis, and hepatocellular carcinoma. Metabolic regulators could be used in innovative therapies to deprive viruses of key metabolites and induce an antiviral defense.


Title: Rôle du métabolisme cellulaire dans le contrôle des hépatites virales chroniques. Abstract: Les virus des hépatites modifient le métabolisme cellulaire des hépatocytes en interagissant avec des enzymes spécifiques, telles que la glucokinase. Les changements métaboliques induits par les virus peuvent avoir un impact direct sur la réponse antivirale innée. Les interactions complexes entre les composants viraux, l'immunité innée et le métabolisme des hépatocytes expliquent pourquoi les infections hépatiques chroniques conduisent à l'inflammation du foie, évoluant vers la cirrhose, la fibrose et le carcinome hépatocellulaire. Des régulateurs du métabolisme pourraient être utilisés dans des thérapies innovantes pour priver les virus de métabolites clés et induire une défense antivirale.


Assuntos
Carcinoma Hepatocelular , Hepatite Viral Humana , Neoplasias Hepáticas , Humanos , Hepatite Crônica , Antivirais/uso terapêutico
4.
Vet Res ; 54(1): 18, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864517

RESUMO

Vaccination is one of the most widely used strategies to protect horses against pathogens. However, available equine vaccines often have limitations, as they do not always provide effective, long-term protection and booster injections are often required. In addition, research efforts are needed to develop effective vaccines against emerging equine pathogens. In this review, we provide an inventory of approved adjuvants for equine vaccines worldwide, and discuss their composition and mode of action when available. A wide range of adjuvants are used in marketed vaccines for horses, the main families being aluminium salts, emulsions, polymers, saponins and ISCOMs. We also present veterinary adjuvants that are already used for vaccination in other species and are currently evaluated in horses to improve equine vaccination and to meet the expected level of protection against pathogens in the equine industry. Finally, we discuss new adjuvants such as liposomes, polylactic acid polymers, inulin, poly-ε-caprolactone nanoparticles and co-polymers that are in development. Our objective is to help professionals in the horse industry understand the composition of marketed equine vaccines in a context of mistrust towards vaccines. Besides, this review provides researchers with a list of adjuvants, either approved or at least evaluated in horses, that could be used either alone or in combination to develop new vaccines.


Assuntos
Adjuvantes Imunológicos , Nanopartículas , Cavalos , Animais , Adjuvantes Imunológicos/farmacologia , Vacinação/veterinária , Nanopartículas/uso terapêutico , Polímeros
5.
FEBS J ; 290(12): 3165-3184, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36748301

RESUMO

In human cells, de novo purine nucleotide biosynthesis is known to be regulated through the formation of a metabolon called purinosome. Here, we employed a bacterial two-hybrid approach to characterize the protein-protein interactions network among the corresponding enzymes of Escherichia coli. Our study revealed a dense network of binary interactions that connect most purine nucleotide biosynthesis enzymes. Notably, PurK, an exclusive prokaryotic enzyme, appears as one of the central hubs of this network. We further showed that modifications in PurK, which disrupted several interactions in the network, affected the purine nucleotide pools and altered the bacterial fitness. Our data suggest that the bacterial de novo purine nucleotide biosynthesis enzymes can assemble in a supramolecular complex and that proper interactions among the components of this complex can contribute to bacterial fitness.


Assuntos
Escherichia coli , Nucleotídeos , Humanos , Escherichia coli/genética , Purinas , Nucleotídeos de Purina
6.
Vaccines (Basel) ; 10(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36560549

RESUMO

Equine influenza virus (EIV) is responsible for recurring outbreaks that are detrimental to the equine industry. Vaccination is key for prevention, but the effectiveness and duration of protection provided by existing vaccines is often insufficient. In order to improve vaccine efficacy, we evaluated the benefit of immune stimulation with inactivated Parapoxvirus ovis (iPPVO) on the antibody response induced by a vaccine boost against EIV. A whole inactivated ISCOMatrix-adjuvanted equine influenza vaccine was administered alone (n = 10) or combined with iPPVO injections at D0, D2 and D4 post vaccination (n = 10) to adult horses that required a vaccine boost 6 months after the last immunization, as now recommended by the WOAH. Antibody levels were measured with the single radial haemolysis (SRH) assay at 1, 3 and 6 months post-vaccination. Results revealed that horses that received iPPVO had higher antibody levels than the control group injected with the EI vaccine alone. Although the vaccine used contains only a clade 1 and European lineage strain, the increase in protective antibodies was also observed against a clade 2 strain. Thus, immune stimulation with iPPVO, a substance already marketed as an immunostimulant, could be used to improve vaccination protocols in horses and potentially other species.

7.
Front Immunol ; 13: 1033314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466918

RESUMO

Hepatitis B, C and D viruses (HBV, HCV, HDV, respectively) specifically infect human hepatocytes and often establish chronic viral infections of the liver, thus escaping antiviral immunity for years. Like other viruses, hepatitis viruses rely on the cellular machinery to meet their energy and metabolite requirements for replication. Although this was initially considered passive parasitism, studies have shown that hepatitis viruses actively rewire cellular metabolism through molecular interactions with specific enzymes such as glucokinase, the first rate-limiting enzyme of glycolysis. As part of research efforts in the field of immunometabolism, it has also been shown that metabolic changes induced by viruses could have a direct impact on the innate antiviral response. Conversely, detection of viral components by innate immunity receptors not only triggers the activation of the antiviral defense but also induces in-depth metabolic reprogramming that is essential to support immunological functions. Altogether, these complex triangular interactions between viral components, innate immunity and hepatocyte metabolism may explain why chronic hepatitis infections progressively lead to liver inflammation and progression to cirrhosis, fibrosis and hepatocellular carcinoma (HCC). In this manuscript, we first present a global overview of known connections between the innate antiviral response and cellular metabolism. We then report known molecular mechanisms by which hepatitis viruses interfere with cellular metabolism in hepatocytes and discuss potential consequences on the innate immune response. Finally, we present evidence that drugs targeting hepatocyte metabolism could be used as an innovative strategy not only to deprive viruses of key metabolites, but also to restore the innate antiviral response that is necessary to clear infection.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Vírus de Hepatite , Hepatócitos , Antivirais/uso terapêutico
8.
J Tissue Eng ; 13: 20417314221122130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093433

RESUMO

Kidney pathology is frequently reported in patients hospitalized with COVID-19, the pandemic disease caused by the Severe acute respiratory coronavirus 2 (SARS-CoV-2). However, due to a lack of suitable study models, the events occurring in the kidney during the earliest stages of infection remain unknown. We have developed hamster organotypic kidney cultures (OKCs) to study the early stages of direct renal infection. OKCs maintained key renal structures in their native three-dimensional arrangement. SARS-CoV-2 productively replicated in hamster OKCs, initially targeting endothelial cells and later disseminating into proximal tubules. We observed a delayed interferon response, markers of necroptosis and pyroptosis, and an early repression of pro-inflammatory cytokines transcription followed by a strong later upregulation. While it remains an open question whether an active replication of SARS-CoV-2 takes place in the kidneys of COVID-19 patients with AKI, our model provides new insights into the kinetics of SARS-CoV-2 kidney infection and can serve as a powerful tool for studying kidney infection by other pathogens and testing the renal toxicity of drugs.

9.
J Mol Biol ; 434(19): 167763, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35907573

RESUMO

Human RSV is the leading cause of infantile bronchiolitis in the world and one of the major causes of childhood deaths in resource-poor settings. It is a major unmet target for vaccines and anti-viral drugs. Respiratory syncytial virus has evolved a unique strategy to evade host immune response by coding for two non-structural proteins NS1 and NS2. Recently it was shown that in infected cells, nuclear NS1 could be involved in transcription regulation of host genes linked to innate immune response, via interactions with chromatin and the Mediator complex. Here we identified the MED25 Mediator subunit as an NS1 interactor in a yeast two-hybrid screen. We demonstrate that NS1 directly interacts with MED25 in vitro and in cellula, and that this interaction involves the MED25 transactivator binding ACID domain on the one hand, and the C-terminal α3 helix of NS1, with an additional contribution of the globular domain of NS1, on the other hand. By NMR we show that the NS1 α3 sequence primarily binds to the MED25 ACID H2 face, similarly to the α-helical transactivation domains (TADs) of transcription regulators such as Herpex simplex VP16 and ATF6α, a master regulator of ER stress response activated upon viral infection. Moreover, we found out that the NS1 could compete with ATF6α TAD for binding to MED25. These findings point to a mechanism of NS1 interfering with innate immune response by impairing recruitment by cellular TADs of the Mediator via MED25 and hence transcription of specific genes by RNA polymerase II.


Assuntos
Complexo Mediador , Vírus Sincicial Respiratório Humano , Transativadores , Proteínas não Estruturais Virais , Cromatina/química , Humanos , Complexo Mediador/química , Ligação Proteica , Domínios Proteicos , RNA Polimerase II/metabolismo , Vírus Sincicial Respiratório Humano/genética , Transativadores/química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética
10.
Cell Rep ; 39(4): 110744, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35477000

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 pandemic, which has led to a devastating global health crisis. The emergence of variants that escape neutralizing responses emphasizes the urgent need to deepen our understanding of SARS-CoV-2 biology. Using a comprehensive identification of RNA-binding proteins (RBPs) by mass spectrometry (ChIRP-MS) approach, we identify 107 high-confidence cellular factors that interact with the SARS-CoV-2 genome during infection. By systematically knocking down their expression in human lung epithelial cells, we find that the majority of the identified RBPs are SARS-CoV-2 proviral factors. In particular, we show that HNRNPA2B1, ILF3, QKI, and SFPQ interact with the SARS-CoV-2 genome and promote viral RNA amplification. Our study provides valuable resources for future investigations into the mechanisms of SARS-CoV-2 replication and the identification of host-centered antiviral therapies.


Assuntos
COVID-19 , RNA Viral , COVID-19/genética , Humanos , Pandemias , RNA Viral/genética , SARS-CoV-2/genética , Replicação Viral/genética
11.
J Virol ; 96(7): e0196221, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35266803

RESUMO

Dengue virus (DENV) is a mosquito-borne flavivirus responsible for dengue disease, a major human health concern for which no effective treatment is available. DENV relies heavily on the host cellular machinery for productive infection. Here, we show that the scaffold protein RACK1, which is part of the DENV replication complex, mediates infection by binding to the 40S ribosomal subunit. Mass spectrometry analysis of RACK1 partners coupled to an RNA interference screen-identified Vigilin and SERBP1 as DENV host-dependency factors. Both are RNA-binding proteins that interact with the DENV genome. Genetic ablation of Vigilin or SERBP1 rendered cells poorly susceptible to DENV, as well as related flaviviruses, by hampering the translation and replication steps. Finally, we established that a Vigilin or SERBP1 mutant lacking RACK1 binding but still interacting with the viral RNA is unable to mediate DENV infection. We propose that RACK1 recruits Vigilin and SERBP1, linking the DENV genome to the translation machinery for efficient infection. IMPORTANCE We recently identified the scaffolding RACK1 protein as an important host-dependency factor for dengue virus (DENV), a positive-stranded RNA virus responsible for the most prevalent mosquito-borne viral disease worldwide. Here, we have performed the first RACK1 interactome in human cells and identified Vigilin and SERBP1 as DENV host-dependency factors. Both are RNA-binding proteins that interact with the DENV RNA to regulate viral replication. Importantly, Vigilin and SERBP1 interact with RACK1 and the DENV viral RNA (vRNA) to mediate viral replication. Overall, our results suggest that RACK1 acts as a binding platform at the surface of the 40S ribosomal subunit to recruit Vigilin and SERBP1, which may therefore function as linkers between the viral RNA and the translation machinery to facilitate infection.


Assuntos
Vírus da Dengue , Dengue , Proteínas de Ligação a RNA , Animais , Dengue/fisiopatologia , Vírus da Dengue/fisiologia , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Proteínas de Neoplasias/metabolismo , RNA Viral/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptores de Quinase C Ativada/metabolismo , Replicação Viral
12.
Int J Mol Sci ; 23(2)2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35055105

RESUMO

Hepatitis C virus (HCV) relies on cellular lipid metabolism for its replication, and actively modulates lipogenesis and lipid trafficking in infected hepatocytes. This translates into an intracellular accumulation of triglycerides leading to liver steatosis, cirrhosis and hepatocellular carcinoma, which are hallmarks of HCV pathogenesis. While the interaction of HCV with hepatocyte metabolic pathways is patent, how viral proteins are able to redirect central carbon metabolism towards lipogenesis is unclear. Here, we report that the HCV protein NS5A activates the glucokinase (GCK) isoenzyme of hexokinases through its D2 domain (NS5A-D2). GCK is the first rate-limiting enzyme of glycolysis in normal hepatocytes whose expression is replaced by the hexokinase 2 (HK2) isoenzyme in hepatocellular carcinoma cell lines. We took advantage of a unique cellular model specifically engineered to re-express GCK instead of HK2 in the Huh7 cell line to evaluate the consequences of NS5A-D2 expression on central carbon and lipid metabolism. NS5A-D2 increased glucose consumption but decreased glycogen storage. This was accompanied by an altered mitochondrial respiration, an accumulation of intracellular triglycerides and an increased production of very-low density lipoproteins. Altogether, our results show that NS5A-D2 can reprogram central carbon metabolism towards a more energetic and glycolytic phenotype compatible with HCV needs for replication.


Assuntos
Glucoquinase/metabolismo , Hepacivirus/fisiologia , Hepatite C/metabolismo , Hepatite C/virologia , Hepatócitos/metabolismo , Hepatócitos/virologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glicogênio/metabolismo , Glicólise , Interações Hospedeiro-Patógeno , Humanos , Metabolismo dos Lipídeos , Lipogênese , Mitocôndrias/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Polimerase Dependente de RNA/química , Proteínas não Estruturais Virais/química
13.
Nat Commun ; 12(1): 5446, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34521844

RESUMO

EOMES and T-BET are related T-box transcription factors that control natural killer (NK) cell development. Here we demonstrate that EOMES and T-BET regulate largely distinct gene sets during this process. EOMES is dominantly expressed in immature NK cells and drives early lineage specification by inducing hallmark receptors and functions. By contrast, T-BET is dominant in mature NK cells, where it induces responsiveness to IL-12 and represses the cell cycle, likely through transcriptional repressors. Regardless, many genes with distinct functions are co-regulated by the two transcription factors. By generating two gene-modified mice facilitating chromatin immunoprecipitation of endogenous EOMES and T-BET, we show a strong overlap in their DNA binding targets, as well as extensive epigenetic changes during NK cell differentiation. Our data thus suggest that EOMES and T-BET may distinctly govern, via differential expression and co-factors recruitment, NK cell maturation by inserting partially overlapping epigenetic regulations.


Assuntos
Ciclo Celular/genética , Linhagem da Célula/genética , Células Matadoras Naturais/imunologia , Proteínas com Domínio T/genética , Animais , Sequência de Bases , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Antígeno CD11b/genética , Antígeno CD11b/imunologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/imunologia , Diferenciação Celular , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/imunologia , Epigênese Genética/imunologia , Interleucina-12/farmacologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Ligação Proteica , Baço/citologia , Baço/imunologia , Proteínas com Domínio T/deficiência , Proteínas com Domínio T/imunologia , Transcrição Gênica , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
14.
Viruses ; 13(9)2021 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-34578395

RESUMO

Our therapeutic arsenal against viruses is very limited and the current pandemic of SARS-CoV-2 highlights the critical need for effective antivirals against emerging coronaviruses. Cellular assays allowing a precise quantification of viral replication in high-throughput experimental settings are essential to the screening of chemical libraries and the selection of best antiviral chemical structures. To develop a reporting system for SARS-CoV-2 infection, we generated cell lines expressing a firefly luciferase maintained in an inactive form by a consensus cleavage site for the viral protease 3CLPro of coronaviruses, so that the luminescent biosensor is turned on upon 3CLPro expression or SARS-CoV-2 infection. This cellular assay was used to screen a metabolism-oriented library of 492 compounds to identify metabolic vulnerabilities of coronaviruses for developing innovative therapeutic strategies. In agreement with recent reports, inhibitors of pyrimidine biosynthesis were found to prevent SARS-CoV-2 replication. Among the top hits, we also identified the NADPH oxidase (NOX) inhibitor Setanaxib. The anti-SARS-CoV-2 activity of Setanaxib was further confirmed using ACE2-expressing human pulmonary cells Beas2B as well as human primary nasal epithelial cells. Altogether, these results validate our cell-based functional assay and the interest of screening libraries of different origins to identify inhibitors of SARS-CoV-2 for drug repurposing or development.


Assuntos
Antivirais/isolamento & purificação , Técnicas Biossensoriais/métodos , Proteases 3C de Coronavírus/metabolismo , SARS-CoV-2/fisiologia , Replicação Viral , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática , Células HEK293 , Humanos , Luciferases de Vaga-Lume/metabolismo , Mucosa Nasal/virologia , Pirazolonas/farmacologia , Piridonas/farmacologia , SARS-CoV-2/metabolismo , Células Vero , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
15.
J Virol ; 95(22): e0091221, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34431698

RESUMO

Respiratory syncytial virus (RSV) is the main cause of acute respiratory infections in young children and also has a major impact on the elderly and immunocompromised people. In the absence of a vaccine or efficient treatment, a better understanding of RSV interactions with the host antiviral response during infection is needed. Previous studies revealed that cytoplasmic inclusion bodies (IBs), where viral replication and transcription occur, could play a major role in the control of innate immunity during infection by recruiting cellular proteins involved in the host antiviral response. We recently showed that the morphogenesis of IBs relies on a liquid-liquid-phase separation mechanism depending on the interaction between viral nucleoprotein (N) and phosphoprotein (P). These scaffold proteins are expected to play a central role in the recruitment of cellular proteins to IBs. Here, we performed a yeast two-hybrid screen using RSV N protein as bait and identified the cellular protein TAX1BP1 as a potential partner of this viral protein. This interaction was validated by pulldown and immunoprecipitation assays. We showed that TAX1BP1 suppression has only a limited impact on RSV infection in cell cultures. However, RSV replication is decreased in TAX1BP1-deficient (TAX1BP1 knockout [TAX1BP1KO]) mice, whereas the production of inflammatory and antiviral cytokines is enhanced. In vitro infection of wild-type or TAX1BP1KO alveolar macrophages confirmed that the innate immune response to RSV infection is enhanced in the absence of TAX1BP1. Altogether, our results suggest that RSV could hijack TAX1BP1 to restrain the host immune response during infection. IMPORTANCE Respiratory syncytial virus (RSV), which is the leading cause of lower respiratory tract illness in infants, remains a medical problem in the absence of a vaccine or efficient treatment. This virus is also recognized as a main pathogen in the elderly and immunocompromised people, and the occurrence of coinfections (with other respiratory viruses and bacteria) amplifies the risks of developing respiratory distress. In this context, a better understanding of the pathogenesis associated with viral respiratory infections, which depends on both viral replication and the host immune response, is needed. The present study reveals that the cellular protein TAX1BP1, which interacts with the RSV nucleoprotein N, participates in the control of the innate immune response during RSV infection, suggesting that the N-TAX1BP1 interaction represents a new target for the development of antivirals.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Proteínas de Neoplasias/imunologia , Proteínas do Nucleocapsídeo/imunologia , Infecções por Vírus Respiratório Sincicial/imunologia , Vírus Sincicial Respiratório Humano/imunologia , Animais , Linhagem Celular , Cricetinae , Humanos , Imunidade Inata , Camundongos , Camundongos Knockout , Replicação Viral
16.
Viruses ; 13(6)2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073414

RESUMO

Over two years (2012-2014), 719 nasopharyngeal samples were collected from 6-week- to 12-month-old infants presenting at the emergency department with moderate to severe acute bronchiolitis. Viral testing was performed, and we found that 98% of samples were positive, including 90% for respiratory syncytial virus, 34% for human rhino virus, and 55% for viral co-detections, with a predominance of RSV/HRV co-infections (30%). Interestingly, we found that the risk of being infected by HRV is higher in the absence of RSV, suggesting interferences or exclusion mechanisms between these two viruses. Conversely, coronavirus infection had no impact on the likelihood of co-infection involving HRV and RSV. Bronchiolitis is the leading cause of hospitalizations in infants before 12 months of age, and many questions about its role in later chronic respiratory diseases (asthma and chronic obstructive pulmonary disease) exist. The role of virus detection and the burden of viral codetections need to be further explored, in order to understand the physiopathology of chronic respiratory diseases, a major public health issue.


Assuntos
Bronquiolite Viral/virologia , Coinfecção/virologia , Bronquiolite Viral/epidemiologia , Coinfecção/epidemiologia , Serviço Hospitalar de Emergência , França/epidemiologia , Humanos , Lactente , Reação em Cadeia da Polimerase Multiplex , Nasofaringe/virologia , Vírus Sincicial Respiratório Humano/classificação , Vírus Sincicial Respiratório Humano/genética , Vírus Sincicial Respiratório Humano/isolamento & purificação , Vírus/classificação , Vírus/genética , Vírus/isolamento & purificação
17.
C R Biol ; 343(4): 79-89, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33988325

RESUMO

Chikungunya is an infectious disease caused by the chikungunya virus (CHIKV), an alphavirus transmitted to humans by Aedes mosquitoes, and for which there is no licensed vaccine nor antiviral treatments. By using a loss-of-function genetic screen, we have recently identified the FHL1 protein as an essential host factor for CHIKV tropism and pathogenesis. FHL1 is highly expressed in muscles cells and fibroblasts, the main CHIKV-target cells. FHL1 interacts with the viral protein nsP3 and plays a critical role in CHIKV genome amplification. Experiments in vivo performed in FHL1-deficient mice have shown that these animals are resistant to infection and do not develop muscular lesions. Altogether these observations, published in the journal Nature [1], show that FHL1 is a key host factor for CHIKV pathogenesis and identify the interaction between FHL1 and nsP3 as a promising target for the development of new antiviral strategies.


Le chikungunya est une maladie infectieuse causée par le virus chikungunya (CHIKV), un alphavirus transmis à l'Homme par les moustiques Aedes et contre lequel il n'existe ni vaccin, ni traitements antiviraux. En utilisant une approche de crible génétique par perte de fonction, nous avons récemment identifié la protéine FHL1 comme un facteur cellulaire essentiel pour le tropisme et la pathogénèse du CHIKV. FHL1 est une molécule présente majoritairement dans les cellules musculaires et les fibroblastes, les cibles privilégiées de CHIKV. FHL1 interagit avec la protéine virale nsP3 et joue un rôle décisif dans le mécanisme d'amplification du génome de CHIKV. Des expériences in vivo chez des souris déficientes pour FHL1 ont montré que ces animaux sont résistants à l'infection et ne développent pas de lésions musculaires. L'ensemble de ces observations publiées dans la revue Nature [1] montrent que FHL1 est un facteur cellulaire clé pour la pathogénèse de CHIKV et identifient l'interaction entre FHL1 et nsp3 comme une cible prometteuse pour le développement de nouvelles stratégies antivirales.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Vírus Chikungunya/genética , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas com Domínio LIM , Camundongos , Proteínas Musculares , Tropismo , Proteínas não Estruturais Virais , Replicação Viral
18.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669407

RESUMO

La Reunion island in the South West Indian Ocean is now endemic for dengue following the introduction of dengue virus serotype 2 (DENV-2) cosmopolitan-I genotype in 2017. DENV-2 infection causes a wide spectrum of clinical manifestations ranging from flu-like disease to severe dengue. The nonstructural glycoprotein 1 (NS1) has been identified as playing a key role in dengue disease severity. The intracellular NS1 exists as a homodimer, whereas a fraction is driven towards the plasma membrane or released as a soluble hexameric protein. Here, we characterized the NS1 glycoproteins from clinical isolates DES-14 and RUN-18 that were collected during the DENV-2 epidemics in Tanzania in 2014 and La Reunion island in 2018, respectively. In relation to hepatotropism of the DENV, expression of recombinant DES-14 NS1 and RUN-18 NS1 glycoproteins was compared in human hepatoma Huh7 cells. We observed that RUN-18 NS1 was poorly stable in Huh7 cells compared to DES-14 NS1. The instability of RUN-18 NS1 leading to a low level of NS1 secretion mostly relates to lysine residues on positions 272 and 324. Our data raise the issue of the consequences of a defect in NS1 stability in human hepatocytes in relation to the major role of NS1 in the pathogenesis of the DENV-2 infection.


Assuntos
Vírus da Dengue/metabolismo , Dengue/epidemiologia , Dengue/metabolismo , Epidemias , Genótipo , Lisina/química , Proteínas não Estruturais Virais/química , Substituição de Aminoácidos , Antígenos Virais/química , Antígenos Virais/genética , Linhagem Celular Tumoral , Dengue/virologia , Células HEK293 , Hepatócitos/metabolismo , Hepatócitos/virologia , Humanos , Multimerização Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Reunião/epidemiologia , Sorogrupo , Tanzânia/epidemiologia , Transfecção , Proteínas não Estruturais Virais/genética
19.
Commun Biol ; 4(1): 217, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594203

RESUMO

During the cancerous transformation of normal hepatocytes into hepatocellular carcinoma (HCC), the enzyme catalyzing the first rate-limiting step of glycolysis, namely the glucokinase (GCK), is replaced by the higher affinity isoenzyme, hexokinase 2 (HK2). Here, we show that in HCC tumors the highest expression level of HK2 is inversely correlated to GCK expression, and is associated to poor prognosis for patient survival. To further explore functional consequences of the GCK-to-HK2 isoenzyme switch occurring during carcinogenesis, HK2 was knocked-out in the HCC cell line Huh7 and replaced by GCK, to generate the Huh7-GCK+/HK2- cell line. HK2 knockdown and GCK expression rewired central carbon metabolism, stimulated mitochondrial respiration and restored essential metabolic functions of normal hepatocytes such as lipogenesis, VLDL secretion, glycogen storage. It also reactivated innate immune responses and sensitivity to natural killer cells, showing that consequences of the HK switch extend beyond metabolic reprogramming.


Assuntos
Metabolismo Energético , Glucoquinase/metabolismo , Hexoquinase/metabolismo , Imunidade Inata , Lipogênese , Neoplasias Hepáticas/enzimologia , Linhagem Celular Tumoral , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glucoquinase/genética , Hexoquinase/genética , Humanos , Isoenzimas , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Transdução de Sinais
20.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33402530

RESUMO

The recent emergence and reemergence of viruses in the human population has highlighted the need to develop broader panels of therapeutic molecules. High-throughput screening assays opening access to untargeted steps of the viral replication cycle will provide powerful leverage to identify innovative antiviral molecules. We report here the development of an innovative protein complementation assay, termed αCentauri, to measure viral translocation between subcellular compartments. As a proof of concept, the Centauri fragment was either tethered to the nuclear pore complex or sequestered in the nucleus, while the complementary α fragment (<16 amino acids) was attached to the integrase proteins of infectious HIV-1. The translocation of viral ribonucleoproteins from the cytoplasm to the nuclear envelope or to the nucleoplasm efficiently reconstituted superfolder green fluorescent protein or NanoLuc αCentauri reporters. These fluorescence- or bioluminescence-based assays offer a robust readout of specific steps of viral infection in a multiwell format that is compatible for high-throughput screening and is validated by a short hairpin RNA-based prototype screen.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Viroses/metabolismo , Replicação Viral/fisiologia , Linhagem Celular , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Infecções por HIV/metabolismo , Células HeLa , Humanos , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Ribonucleoproteínas/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA