Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Clin Invest ; 131(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34491913

RESUMO

Peripheral nerves have the capacity for regeneration, but the rate of regeneration is so slow that many nerve injuries lead to incomplete recovery and permanent disability for patients. Macrophages play a critical role in the peripheral nerve response to injury, contributing to both Wallerian degeneration and nerve regeneration, and their function has recently been shown to be dependent on intracellular metabolism. To date, the impact of their intracellular metabolism on peripheral nerve regeneration has not been studied. We examined conditional transgenic mice with selective ablation in macrophages of solute carrier family 16, member 1 (Slc16a1), which encodes monocarboxylate transporter 1 (MCT1), and found that MCT1 contributed to macrophage metabolism, phenotype, and function, specifically in regard to phagocytosis and peripheral nerve regeneration. Adoptive cell transfer of wild-type macrophages ameliorated the impaired nerve regeneration in macrophage-selective MCT1-null mice. We also developed a mouse model that overexpressed MCT1 in macrophages and found that peripheral nerves in these mice regenerated more rapidly than in control mice. Our study provides further evidence that MCT1 has an important biological role in macrophages and that manipulations of macrophage metabolism can enhance recovery from peripheral nerve injuries, for which there are currently no approved medical therapies.


Assuntos
Macrófagos/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/metabolismo , Nervo Isquiático , Simportadores/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Transportadores de Ácidos Monocarboxílicos/genética , Traumatismos dos Nervos Periféricos/genética , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia , Simportadores/genética
2.
J Vis Exp ; (173)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34309603

RESUMO

Disruption of nucleocytoplasmic transport is increasingly implicated in the pathogenesis of neurodegenerative diseases. Moreover, there is a growing recognition of cell-specific differences in nuclear pore complex structure, prompting a need to adapt nuclear transport methods for use in neurons. Permeabilized cell assays, in which the plasma membrane is selectively perforated by digitonin, are widely used to study passive and active nuclear transport in immortalized cell lines but have not been applied to neuronal cultures. In our initial attempts, we observed the rapid loss of nuclear membrane integrity in primary mouse cortical neurons exposed to even low concentrations of digitonin. We hypothesized that neuronal nuclear membranes may be uniquely vulnerable to the loss of cytoplasmic support. After testing multiple approaches to improve nuclear stability, we observed optimal nuclear integrity following hypotonic lysis in the presence of a concentrated bovine serum albumin cushion. Neuronal nuclei prepared by this approach reliably import recombinant fluorescent cargo in an energy-dependent manner, facilitating analysis of nuclear import by high content microscopy with automated analysis. We anticipate that this method will be broadly applicable to studies of passive and active nuclear transport in primary neurons.


Assuntos
Núcleo Celular , Poro Nuclear , Transporte Ativo do Núcleo Celular , Animais , Núcleo Celular/metabolismo , Digitonina/metabolismo , Células HeLa , Humanos , Camundongos , Neurônios , Membrana Nuclear , Poro Nuclear/metabolismo
3.
J Pharmacol Exp Ther ; 378(2): 51-59, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33986035

RESUMO

Cocaine use disorder currently lacks Food and Drug Administration-approved treatments. In rodents, the glutamate transporter-1 (GLT-1) is downregulated in the nucleus accumbens after cocaine self-administration, and increasing the expression and function of GLT-1 reduces the reinstatement of cocaine seeking. The ß-lactam antibiotic ceftriaxone upregulates GLT-1 and attenuates cue- and cocaine-induced cocaine seeking without affecting motivation for natural rewards. Although ceftriaxone shows promise for treating cocaine use disorder, it possesses characteristics that limit successful translation from bench to bedside, including poor brain penetration, a lack of oral bioavailability, and a risk of bacterial resistance when used chronically. Thus, we aimed to develop novel molecules that retained the GLT-1-enhancing effects of ceftriaxone but displayed superior drug-like properties. Here, we describe a new monocyclic ß-lactam, MC-100093, as a potent upregulator of GLT-1 that is orally bioavailable and devoid of antimicrobial properties. MC-100093 was synthesized and tested in vitro and in vivo to determine physiochemical, pharmacokinetic, and pharmacodynamic properties. Next, adult male rats underwent cocaine self-administration and extinction training. During extinction training, rats received one of four doses of MC-100093 for 6-8 days prior to a single cue-primed reinstatement test. Separate cohorts of rats were used to assess nucleus accumbens GLT-1 expression and MC-100093 effects on sucrose self-administration. We found that 50 mg/kg MC-100093 attenuated cue-primed reinstatement of cocaine seeking while upregulating GLT-1 expression in the nucleus accumbens core. This dose did not produce sedation, nor did it decrease sucrose consumption or body weight. Thus, MC-100093 represents a potential treatment to reduce cocaine relapse. SIGNIFICANCE STATEMENT: Increasing GLT-1 activity reliably reduces drug-seeking across classes of drugs; however, existing GLT1-enhancers have side effects and lack oral bioavailability. To address this issue, novel GLT-1 enhancers were synthesized, and the compound with the most favorable pharmacokinetic and pharmacodynamic properties, MC-100093, was selected for further testing. MC-100093 attenuated cued cocaine seeking without reducing food seeking or locomotion and upregulated GLT-1 expression in the nucleus accumbens.


Assuntos
beta-Lactamas , Animais , Cocaína , Masculino , Ratos
4.
Cell Rep ; 34(2): 108610, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33440165

RESUMO

Oligodendrocytes (OLs) are important for myelination and shuttling energy metabolites lactate and pyruvate toward axons through their expression of monocarboxylate transporter 1 (MCT1). Recent studies suggest that loss of OL MCT1 causes axonal degeneration. However, it is unknown how widespread and chronic loss of MCT1 in OLs specifically affects neuronal energy homeostasis with aging. To answer this, MCT1 conditional null mice were generated that allow for OL-specific MCT1 ablation. We observe that MCT1 loss from OL lineage cells is dispensable for normal myelination and axonal energy homeostasis early in life. By contrast, loss of OL lineage MCT1 expression with aging leads to significant axonal degeneration with concomitant hypomyelination. These data support the hypothesis that MCT1 is important for neuronal energy homeostasis in the aging central nervous system (CNS). The reduction in OL MCT1 that occurs with aging may enhance the risk for axonal degeneration and atrophy in neurodegenerative diseases.


Assuntos
Axônios/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Bainha de Mielina/metabolismo , Degeneração Neural/metabolismo , Oligodendroglia/metabolismo , Simportadores/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Transportadores de Ácidos Monocarboxílicos/deficiência , Bainha de Mielina/patologia , Oligodendroglia/patologia , Simportadores/deficiência
5.
Nat Neurosci ; 22(5): 741-752, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30936556

RESUMO

Despite expanding knowledge regarding the role of astroglia in regulating neuronal function, little is known about regional or functional subgroups of brain astroglia and how they may interact with neurons. We use an astroglia-specific promoter fragment in transgenic mice to identify an anatomically defined subset of adult gray matter astroglia. Using transcriptomic and histological analyses, we generate a combinatorial profile for the in vivo identification and characterization of this astroglia subpopulation. These astroglia are enriched in mouse cortical layer V; express distinct molecular markers, including Norrin and leucine-rich repeat-containing G-protein-coupled receptor 6 (LGR6), with corresponding layer-specific neuronal ligands; are found in the human cortex; and modulate neuronal activity. Astrocytic Norrin appears to regulate dendrites and spines; its loss, as occurring in Norrie disease, contributes to cortical dendritic spine loss. These studies provide evidence that human and rodent astroglia subtypes are regionally and functionally distinct, can regulate local neuronal dendrite and synaptic spine development, and contribute to disease.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Proteínas do Olho/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Células Cultivadas , Espinhas Dendríticas/fisiologia , Substância Cinzenta/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Córtex Motor/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transcriptoma
7.
Neuron ; 99(5): 925-940.e7, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30189209

RESUMO

Tau is the major constituent of neurofibrillary tangles in Alzheimer's disease (AD), but the mechanism underlying tau-associated neural damage remains unclear. Here, we show that tau can directly interact with nucleoporins of the nuclear pore complex (NPC) and affect their structural and functional integrity. Pathological tau impairs nuclear import and export in tau-overexpressing transgenic mice and in human AD brain tissue. Furthermore, the nucleoporin Nup98 accumulates in the cell bodies of some tangle-bearing neurons and can facilitate tau aggregation in vitro. These data support the hypothesis that tau can directly interact with NPC components, leading to their mislocalization and consequent disruption of NPC function. This raises the possibility that NPC dysfunction contributes to tau-induced neurotoxicity in AD and tauopathies.


Assuntos
Doença de Alzheimer/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Proteínas tau/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Núcleo Celular/patologia , Citoplasma/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos
8.
Brain ; 141(9): 2561-2575, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30007309

RESUMO

We recently demonstrated that microRNA-218 (miR-218) is greatly enriched in motor neurons and is released extracellularly in amyotrophic lateral sclerosis model rats. To determine if the released, motor neuron-derived miR-218 may have a functional role in amyotrophic lateral sclerosis, we examined the effect of miR-218 on neighbouring astrocytes. Surprisingly, we found that extracellular, motor neuron-derived miR-218 can be taken up by astrocytes and is sufficient to downregulate an important glutamate transporter in astrocytes [excitatory amino acid transporter 2 (EAAT2)]. The effect of miR-218 on astrocytes extends beyond EAAT2 since miR-218 binding sites are enriched in mRNAs translationally downregulated in amyotrophic lateral sclerosis astrocytes. Inhibiting miR-218 with antisense oligonucleotides in amyotrophic lateral sclerosis model mice mitigates the loss of EAAT2 and other miR-218-mediated changes, providing an important in vivo demonstration of the relevance of microRNA-mediated communication between neurons and astrocytes. These data define a novel mechanism in neurodegeneration whereby microRNAs derived from dying neurons can directly modify the glial phenotype and cause astrocyte dysfunction.


Assuntos
Esclerose Lateral Amiotrófica/genética , Astrócitos/fisiologia , MicroRNAs/metabolismo , Sistema X-AG de Transporte de Aminoácidos/genética , Sistema X-AG de Transporte de Aminoácidos/fisiologia , Animais , Astrócitos/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/fisiologia , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/fisiologia , Neurônios Motores/metabolismo , Neurônios Motores/fisiologia , Neuroglia/metabolismo
9.
Nature ; 525(7567): 56-61, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26308891

RESUMO

The hexanucleotide repeat expansion (HRE) GGGGCC (G4C2) in C9orf72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent studies support an HRE RNA gain-of-function mechanism of neurotoxicity, and we previously identified protein interactors for the G4C2 RNA including RanGAP1. A candidate-based genetic screen in Drosophila expressing 30 G4C2 repeats identified RanGAP (Drosophila orthologue of human RanGAP1), a key regulator of nucleocytoplasmic transport, as a potent suppressor of neurodegeneration. Enhancing nuclear import or suppressing nuclear export of proteins also suppresses neurodegeneration. RanGAP physically interacts with HRE RNA and is mislocalized in HRE-expressing flies, neurons from C9orf72 ALS patient-derived induced pluripotent stem cells (iPSC-derived neurons), and in C9orf72 ALS patient brain tissue. Nuclear import is impaired as a result of HRE expression in the fly model and in C9orf72 iPSC-derived neurons, and these deficits are rescued by small molecules and antisense oligonucleotides targeting the HRE G-quadruplexes. Nucleocytoplasmic transport defects may be a fundamental pathway for ALS and FTD that is amenable to pharmacotherapeutic intervention.


Assuntos
Transporte Ativo do Núcleo Celular/genética , Núcleo Celular/metabolismo , Expansão das Repetições de DNA/genética , Fases de Leitura Aberta/genética , Proteínas/genética , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Proteína C9orf72 , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Quadruplex G , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Poro Nuclear/química , Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Oligonucleotídeos Antissenso/genética , RNA/genética , RNA/metabolismo
10.
Exp Neurol ; 263: 325-38, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25447940

RESUMO

Peripheral nerve regeneration following injury occurs spontaneously, but many of the processes require metabolic energy. The mechanism of energy supply to axons has not previously been determined. In the central nervous system, monocarboxylate transporter 1 (MCT1), expressed in oligodendroglia, is critical for supplying lactate or other energy metabolites to axons. In the current study, MCT1 is shown to localize within the peripheral nervous system to perineurial cells, dorsal root ganglion neurons, and Schwann cells by MCT1 immunofluorescence in wild-type mice and tdTomato fluorescence in MCT1 BAC reporter mice. To investigate whether MCT1 is necessary for peripheral nerve regeneration, sciatic nerves of MCT1 heterozygous null mice are crushed and peripheral nerve regeneration was quantified electrophysiologically and anatomically. Compound muscle action potential (CMAP) recovery is delayed from a median of 21 days in wild-type mice to greater than 38 days in MCT1 heterozygote null mice. In fact, half of the MCT1 heterozygote null mice have no recovery of CMAP at 42 days, while all of the wild-type mice recovered. In addition, muscle fibers remain 40% more atrophic and neuromuscular junctions 40% more denervated at 42 days post-crush in the MCT1 heterozygote null mice than wild-type mice. The delay in nerve regeneration is not only in motor axons, as the number of regenerated axons in the sural sensory nerve of MCT1 heterozygote null mice at 4 weeks and tibial mixed sensory and motor nerve at 3 weeks is also significantly reduced compared to wild-type mice. This delay in regeneration may be partly due to failed Schwann cell function, as there is reduced early phagocytosis of myelin debris and remyelination of axon segments. These data for the first time demonstrate that MCT1 is critical for regeneration of both sensory and motor axons in mice following sciatic nerve crush.


Assuntos
Transportadores de Ácidos Monocarboxílicos/metabolismo , Regeneração Nervosa/fisiologia , Nervo Isquiático/metabolismo , Simportadores/metabolismo , Potenciais de Ação , Animais , Western Blotting , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Compressão Nervosa , Reação em Cadeia da Polimerase em Tempo Real , Nervo Isquiático/lesões
11.
Neuron ; 80(2): 415-28, 2013 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-24139042

RESUMO

A hexanucleotide GGGGCC repeat expansion in the noncoding region of the C9ORF72 gene is the most common genetic abnormality in familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The function of the C9ORF72 protein is unknown, as is the mechanism by which the repeat expansion could cause disease. Induced pluripotent stem cell (iPSC)-differentiated neurons from C9ORF72 ALS patients revealed disease-specific (1) intranuclear GGGGCCexp RNA foci, (2) dysregulated gene expression, (3) sequestration of GGGGCCexp RNA binding protein ADARB2, and (4) susceptibility to excitotoxicity. These pathological and pathogenic characteristics were confirmed in ALS brain and were mitigated with antisense oligonucleotide (ASO) therapeutics to the C9ORF72 transcript or repeat expansion despite the presence of repeat-associated non-ATG translation (RAN) products. These data indicate a toxic RNA gain-of-function mechanism as a cause of C9ORF72 ALS and provide candidate antisense therapeutics and candidate human pharmacodynamic markers for therapy.


Assuntos
Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/metabolismo , Oligonucleotídeos Antissenso/uso terapêutico , Proteínas/metabolismo , RNA/toxicidade , Adenosina Desaminase/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72 , Contagem de Células , Relação Dose-Resposta a Droga , Demência Frontotemporal/tratamento farmacológico , Demência Frontotemporal/genética , Ácido Glutâmico/toxicidade , Humanos , Células-Tronco Pluripotentes Induzidas , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Proteínas/genética , RNA/genética , RNA/metabolismo , Proteínas de Ligação a RNA , Sequências Repetitivas de Ácido Nucleico
12.
J Biol Chem ; 288(10): 7105-16, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23364798

RESUMO

Perisynaptic astrocytes express important glutamate transporters, especially excitatory amino acid transporter 2 (EAAT2, rodent analog GLT1) to regulate extracellular glutamate levels and modulate synaptic activation. In this study, we investigated an exciting new pathway, the exosome-mediated transfer of microRNA (in particular, miR-124a), in neuron-to-astrocyte signaling. Exosomes isolated from neuron-conditioned medium contain abundant microRNAs and small RNAs. These exosomes can be directly internalized into astrocytes and increase astrocyte miR-124a and GLT1 protein levels. Direct miR-124a transfection also significantly and selectively increases protein (but not mRNA) expression levels of GLT1 in cultured astrocytes. Consistent with our in vitro findings, intrastriatal injection of specific antisense against miR-124a into adult mice dramatically reduces GLT1 protein expression and glutamate uptake levels in striatum without reducing GLT1 mRNA levels. MiR-124a-mediated regulation of GLT1 expression appears to be indirect and is not mediated by its suppression of the putative GLT1 inhibitory ligand ephrinA3. Moreover, miR-124a is selectively reduced in the spinal cord tissue of end-stage SOD1 G93A mice, the mouse model of ALS. Subsequent exogenous delivery of miR-124a in vivo through stereotaxic injection significantly prevents further pathological loss of GLT1 proteins, as determined by GLT1 immunoreactivity in SOD1 G93A mice. Together, our study characterized a new neuron-to-astrocyte communication pathway and identified miRNAs that modulate GLT1 protein expression in astrocytes in vitro and in vivo.


Assuntos
Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Exossomos/metabolismo , MicroRNAs/genética , Neurônios/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Células Cultivadas , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Endocitose , Transportador 2 de Aminoácido Excitatório/metabolismo , Exossomos/ultraestrutura , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glutamatos/metabolismo , Células HEK293 , Humanos , Immunoblotting , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica , Biossíntese de Proteínas , Transdução de Sinais/genética , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
13.
Psychiatr Genet ; 21(2): 90-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21233784

RESUMO

OBJECTIVE: Abnormalities in neurotransmission within the cortico-striatal-thalamo-cortical circuitry are implicated in the pathogenesis of Tourette syndrome. Glutamate is a major excitatory neurotransmitter and an important member in the cortico-striatal-thalamo-cortical circuitry. To explore the role of glutamatergic neurotransmission in genetic susceptibility of Tourette syndrome, we carried out the genetic and functional characterization of sequence variants in SLC1A3 gene, which encodes the main glutamate transporter in astrocytes in individuals with well-characterized Tourette syndrome (n=256) and normal controls (n=224). METHODS: Exon-containing regions of SLC1A3 gene were screened using capillary electrophoresis-single strand conformation polymorphism followed by direct sequencing. Sequence variants were genotyped by restriction enzyme digestion and studied using glutamate uptake assay and membrane protein pull-down for transporter function. RESULTS: A missense variant involving a highly conserved residue, E219D, was identified in 11 heterozygous individuals with Tourette syndrome and four in the controls. The allele frequency for E219D was 2.4 folds higher in the Tourette syndrome (0.022) compared with the control cohort (0.009) although the difference did not reach statistical significance in the current cohorts (P=0.09). A H-glutamate-uptake assay showed that E219D conveys a significant increase (1.66 fold) in the SLC1A3-mediated glutamate uptake in HEK293 cells. A biotin-mediated membrane pull-down analysis showed a similar increase (1.5 fold) of mutant SLC1A3 protein in the membrane fraction of transfected HEK293 cells compared with that in the wild type controls. CONCLUSION: These results indicate that E219D is a functional SLC1A3 variant that is presented in a small number of individuals with Tourette syndrome. Further studies on possible changes in glutamate transport in the pathogenesis of Tourette syndrome are warranted.


Assuntos
Transportador 1 de Aminoácido Excitatório/genética , Predisposição Genética para Doença , Mutação de Sentido Incorreto/genética , Síndrome de Tourette/genética , Alelos , Sequência de Bases , Comportamento , Criança , Pré-Escolar , Sequência Conservada/genética , Análise Mutacional de DNA , Eletroforese Capilar , Frequência do Gene/genética , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Lactente , Dados de Sequência Molecular , Polimorfismo Conformacional de Fita Simples , Frações Subcelulares/metabolismo
14.
Glia ; 59(2): 200-7, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21046559

RESUMO

Astrocyte heterogeneity remains largely unknown in the CNS due to lack of specific astroglial markers. In this study, molecular identity of in vivo astrocytes was characterized in BAC ALDH1L1 and BAC GLT1 eGFP promoter reporter transgenic mice. ALDH1L1 promoter is selectively activated in adult cortical and spinal cord astrocytes, indicated by the overlap of eGFP expression with ALDH1L1 and GFAP, but not with NeuN, APC, Olig2, IbaI, PDGFRα immunoreactivity in BAC ALDH1L1 eGFP reporter mice. Interestingly, ALDH1L1 expression levels (protein, mRNA, and promoter activity) in spinal cord were selectively decreased during postnatal maturation. In contrast, its expression was up-regulated in reactive astrocytes in both acute neural injury and chronic neurodegenerative (G93A mutant SOD1) conditions, similar to GFAP, but opposite of GLT1. ALDH1L1(+) and GLT1(+) cells isolated through fluorescence activated cell sorting (FACS) from BAC ALDH1L1 and BAC GLT1 eGFP mice share a highly similar gene expression profile, suggesting ALDH1L1 and GLT1 are co-expressed in the same population of astrocytes. This observation was further supported by overlap of the eGFP driven by the ALDH1L1 genomic promoter and the tdTomato driven by a 8.3kb EAAT2 promoter fragment in astrocytes of BAC ALDH1L1 eGFP X EAAT2-tdTomato mice. These studies support ALDH1L1 as a general CNS astroglial marker and investigated astrocyte heterogeneity in the CNS by comparing the molecular identity of the ALDH1L1(+) and GLT1(+) astrocytes from astroglial reporter mice. These astroglial reporter mice provide useful in vivo tools for the molecular analysis of astrocytes in physiological and pathological conditions.


Assuntos
Aldeído Desidrogenase/genética , Astrócitos/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Regulação da Expressão Gênica/genética , Isoenzimas/genética , Família Aldeído Desidrogenase 1 , Animais , Células Cultivadas , Córtex Cerebral/citologia , Cromossomos Artificiais Bacterianos/genética , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica/métodos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Lectinas de Plantas/genética , Regiões Promotoras Genéticas/genética , Retinal Desidrogenase , Medula Espinal/citologia , Superóxido Dismutase/genética
15.
Glia ; 58(3): 277-86, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19672971

RESUMO

Astroglial glutamate transporter EAAT2/GLT1 prevents glutamate-induced excitotoxicity in the central nervous system. Expression of EAAT2/GLT1 is dynamically regulated by neurons. The pathogenesis of amyotrophic lateral sclerosis (ALS) involves astroglial dysfunction, including dramatic loss of EAAT2/GLT1. DNA methylation of gene promoters represents one of the most important epigenetic mechanisms in regulating gene expression. The involvement of DNA methylation in the regulation of astroglial EAAT2/GLT1 expression in different conditions, especially in ALS has not been explored. In this study, we established a procedure to selectively isolate a pure astrocyte population in vitro and in vivo from BAC GLT1 eGFP mice using an eGFP-based fluorescence-activated cell sorting approach. Astrocytes isolated from this procedure are GFAP+ and GLT1+ and respond to neuronal stimulation, enabling direct methylation analysis of GLT1 promoter in these astrocytes. To investigate the role of DNA methylation in physiological and pathological EAAT2/GLT1 expression, methylation status of the EAAT2/GLT1 promoter was analyzed in astrocytes from in vitro and in vivo paradigms or postmortem ALS motor cortex by bisulfite sequencing method. DNA demethylation on selective CpG sites of the GLT1 promoter was highly correlated to increased GLT1 mRNA levels in astrocytes in response to neuronal stimulation; however, low level of methylation was found on CpG sites of EAAT2 promoter from postmortem motor cortex of human amyotrophic lateral sclerosis patients. In summary, hypermethylation on selective CpG sites of the GLT1 promoter is involved in repression of GLT1 promoter activation, but this regulation does not play a role in astroglial dysfunction of EAAT2 expression in patients with ALS.


Assuntos
Astrócitos/metabolismo , Sistema Nervoso Central/metabolismo , Metilação de DNA/genética , Epigênese Genética/genética , Transportador 2 de Aminoácido Excitatório/genética , Neurônios/metabolismo , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/fisiopatologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Sistema Nervoso Central/citologia , Sistema Nervoso Central/fisiopatologia , Ilhas de CpG/genética , Regulação da Expressão Gênica/genética , Ácido Glutâmico/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Córtex Motor/metabolismo , Córtex Motor/patologia , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Degeneração Neural/genética , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Neurônios/patologia , Neurotoxinas/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Sinapses/genética , Sinapses/metabolismo , Transmissão Sináptica/genética
16.
Neuron ; 61(6): 880-94, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19323997

RESUMO

The neuron-astrocyte synaptic complex is a fundamental operational unit of the nervous system. Astroglia regulate synaptic glutamate, via neurotransmitter transport by GLT1/EAAT2. Astroglial mechanisms underlying this essential neuron-glial communication are not known. We now show that presynaptic terminals regulate astroglial synaptic functions, GLT1/EAAT2, via kappa B-motif binding phosphoprotein (KBBP), the mouse homolog of human heterogeneous nuclear ribonucleoprotein K (hnRNP K), which binds the GLT1/EAAT2 promoter. Neuron-stimulated KBBP is required for GLT1/EAAT2 transcriptional activation and is responsible for astroglial alterations in neural injury. Denervation of neuron-astrocyte signaling by corticospinal tract transection, ricin-induced motor neuron death, or neurodegeneration in amyotrophic lateral sclerosis all result in reduced astroglial KBBP expression and transcriptional dysfunction of astroglial transporter expression. Presynaptic elements dynamically coordinate normal astroglial function and also provide a fundamental signaling mechanism by which altered neuronal function and injury leads to dysregulated astroglia in CNS disease.


Assuntos
Astrócitos/citologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Terminações Pré-Sinápticas/fisiologia , Sinapses/fisiologia , Análise de Variância , Animais , Animais Recém-Nascidos , Córtex Cerebral/citologia , Técnicas de Cocultura/métodos , Relação Dose-Resposta a Droga , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Embrião de Mamíferos , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Transportador 2 de Aminoácido Excitatório/genética , Proteínas de Fluorescência Verde/genética , Humanos , Ácido Caínico/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas Analíticas Microfluídicas/métodos , Mutagênese , NF-kappa B/genética , NF-kappa B/metabolismo , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Tratos Piramidais/metabolismo , Tratos Piramidais/fisiopatologia , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Traumatismos da Medula Espinal/patologia , Superóxido Dismutase/genética , Sinapses/efeitos dos fármacos , Tetrodotoxina/farmacologia , Transfecção/métodos , Regulação para Cima/fisiologia
17.
J Biol Chem ; 283(10): 6175-83, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18167356

RESUMO

GTRAP3-18 interacts with and reduces the activity of the neuronal specific Na(+)/K(+) glutamate transporter, EAAC1 both in vitro and in vivo. GTRAP3-18 and the related isoform, JM4, are distant relatives of the Rab GTPase-interacting factor PRA1, and share a topology of four transmembrane domains and cytosolic termini. GTRAP3-18 and JM4 are resident endoplasmic reticulum (ER) proteins. The physiological role of GTRAP3-18 is poorly understood. We demonstrate for the first time that GTRAP3-18 is a regulator of ER protein trafficking. Expression of GTRAP3-18 delays the ER exit of EAAC1, as well as other members of the excitatory amino acid transporter family. GTRAP3-18 uses hydrophobic domain interactions in the ER membrane to self-associate and cytoplasmic interactions at the C terminus to regulate trafficking. The features of GTRAP3-18 activity are consistent with recent phylogenic sequence analyses suggesting GTRAP3-18 and JM4 be reclassified as mammalian isoforms of the yeast protein family Yip, Yip6b, and Yip6a, respectively.


Assuntos
Proteínas de Transporte/biossíntese , Retículo Endoplasmático/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Animais , Células COS , Proteínas de Transporte/genética , Chlorocebus aethiops , Retículo Endoplasmático/genética , Transportador 3 de Aminoácido Excitatório/genética , Expressão Gênica , Proteínas de Choque Térmico , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras , Camundongos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Homologia Estrutural de Proteína
18.
J Biol Chem ; 283(10): 6561-71, 2008 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-18096700

RESUMO

Excitatory amino acid transporters (EAATs) are the primary regulators of extracellular glutamate concentrations in the central nervous system. Their dysfunction may contribute to several neurological diseases. To date, five distinct mammalian glutamate transporters have been cloned. In brain, EAAC1 (excitatory amino acid carrier 1) is the primary neuronal glutamate transporter, localized on the perisynaptic membranes that are near release sites. Despite its potential importance in synaptic actions, little is known concerning the regulation of EAAC1 trafficking from the endoplasmic reticulum (ER) to the cell surface. Previously, we identified an EAAC1-associated protein, GTRAP3-18, an ER protein that prevents ER exit of EAAC1 when induced. Here we show that RTN2B, a member of the reticulon protein family that mainly localizes in the ER and ER exit sites interacts with EAAC1 and GTRAP3-18. EAAC1 and GTRAP3-18 bind to different regions of RTN2B. Each protein can separately and independently form complexes with EAAC1. RTN2B enhances ER exit and the cell surface composition of EAAC1 in heterologous cells. Expression of short interfering RNA-mediated knockdown of RTN2B decreases the EAAC1 protein level in neurons. Overall, our results suggest that RTN2B functions as a positive regulator in the delivery of EAAC1 from the ER to the cell surface. These studies indicate that transporter exit from the ER controlled by the interaction with its ER binding partner represents a critical regulatory step in glutamate transporter trafficking to the cell surface.


Assuntos
Encéfalo/metabolismo , Transportador 3 de Aminoácido Excitatório/metabolismo , Ácido Glutâmico/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Animais , Células COS , Chlorocebus aethiops , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Transportador 3 de Aminoácido Excitatório/genética , Ácido Glutâmico/genética , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Proteínas Musculares/antagonistas & inibidores , Proteínas Musculares/genética , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/genética , Transporte Proteico/fisiologia , RNA Interferente Pequeno/genética , Ratos , Sinapses/metabolismo
19.
Nature ; 433(7021): 73-7, 2005 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-15635412

RESUMO

Glutamate is the principal excitatory neurotransmitter in the nervous system. Inactivation of synaptic glutamate is handled by the glutamate transporter GLT1 (also known as EAAT2; refs 1, 2), the physiologically dominant astroglial protein. In spite of its critical importance in normal and abnormal synaptic activity, no practical pharmaceutical can positively modulate this protein. Animal studies show that the protein is important for normal excitatory synaptic transmission, while its dysfunction is implicated in acute and chronic neurological disorders, including amyotrophic lateral sclerosis (ALS), stroke, brain tumours and epilepsy. Using a blinded screen of 1,040 FDA-approved drugs and nutritionals, we discovered that many beta-lactam antibiotics are potent stimulators of GLT1 expression. Furthermore, this action appears to be mediated through increased transcription of the GLT1 gene. beta-Lactams and various semi-synthetic derivatives are potent antibiotics that act to inhibit bacterial synthetic pathways. When delivered to animals, the beta-lactam ceftriaxone increased both brain expression of GLT1 and its biochemical and functional activity. Glutamate transporters are important in preventing glutamate neurotoxicity. Ceftriaxone was neuroprotective in vitro when used in models of ischaemic injury and motor neuron degeneration, both based in part on glutamate toxicity. When used in an animal model of the fatal disease ALS, the drug delayed loss of neurons and muscle strength, and increased mouse survival. Thus these studies provide a class of potential neurotherapeutics that act to modulate the expression of glutamate neurotransmitter transporters via gene activation.


Assuntos
Antibacterianos/farmacologia , Transportador 2 de Aminoácido Excitatório/biossíntese , Transportador 2 de Aminoácido Excitatório/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , beta-Lactamas/farmacologia , Animais , Ceftriaxona/farmacologia , Contagem de Células , Células Cultivadas , Sistema Nervoso Central/citologia , Sistema Nervoso Central/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Genes Reporter/genética , Técnicas In Vitro , Precondicionamento Isquêmico , Camundongos , Camundongos Transgênicos , Neurônios Motores/citologia , Neurônios Motores/efeitos dos fármacos , Penicilinas/farmacologia , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ativação Transcricional , Estados Unidos , United States Food and Drug Administration
20.
Neuromolecular Med ; 3(1): 15-28, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12665673

RESUMO

Cyclooxygenases catalyze the first committed step in the formation of prostaglandins and thromboxanes from arachidonic acid. Cyclooxygenase-2 (COX-2), the inducible isoform of cyclooxygenase, is expressed in brain selectively in neurons of hippocampus, cerebral cortex, amygdala, and hypothalamus. Prostaglandins function in many processes in the CNS, including fever induction, nociception, and learning and memory, and are upregulated in paradigms of excitotoxic brain injury such as stroke and epilepsy. To address the varied functions of COX-2 and its prostaglandin products in brain, we have developed a transgenic mouse model in which COX-2 is selectively overexpressed in neurons of the CNS. COX-2 transgenic mice demonstrate elevated levels of all prostaglandins and thromboxane, albeit with a predominant induction of PGE(2) over other prostaglandins, followed by more modest inductions of PGI(2), and relatively smaller increases in PGF(2alpha),PGD(2), and TxB(2). We also examined whether increased neuronal production of prostaglandins would affect fever induction in response to the bacterial endotoxin lipopolysaccharide. COX-2 induction in brain endothelium has been previously determined to play an important role in fever induction, and we tested whether neuronal expression of COX-2 in hypothalamus also contributed to the febrile response. We found that in mice expressing transgenic COX-2 in anterior hypothalamus, the febrile response was significantly potentiated in transgenic as compared to non-transgenic mice, with an accelerated onset of fever by 1 2 hours after LPS administration, suggesting a role for neuronally derived COX-2 in the fever response.


Assuntos
Núcleo Hipotalâmico Anterior/enzimologia , Dinoprostona/biossíntese , Febre/enzimologia , Isoenzimas/metabolismo , Neurônios/enzimologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Animais , Núcleo Hipotalâmico Anterior/efeitos dos fármacos , Núcleo Hipotalâmico Anterior/fisiopatologia , Ciclo-Oxigenase 2 , Epoprostenol/biossíntese , Febre/genética , Febre/fisiopatologia , Regulação Enzimológica da Expressão Gênica/genética , Imuno-Histoquímica , Isoenzimas/genética , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Prostaglandina-Endoperóxido Sintases/genética , Tromboxanos/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA