Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 780530, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432231

RESUMO

Autotrophic and heterotrophic bacterioplankton are essential to the biogeochemistry of tropical ecosystems. However, the processes that govern their dynamics are not well known. We provide here a high-frequency assessment of bacterial community dynamics and concurrent environmental factors in Red Sea coastal waters. Weekly sampling of surface samples during a full annual cycle at an enclosed station revealed high variability in ecological conditions, which reflected in changes of major bacterioplankton communities. Temperature varied between 23 and 34°C during the sampling period. Autotrophic (Synechococcus, 1.7-16.2 × 104 cells mL-1) and heterotrophic bacteria (1.6-4.3 × 105 cells mL-1) showed two maxima in abundance in spring and summer, while minima were found in winter and autumn. Heterotrophic cells with high nucleic acid content (HNA) peaked in July, but their contribution to the total cell counts (35-60%) did not show a clear seasonal pattern. Actively respiring cells (CTC+) contributed between 4 and 51% of the total number of heterotrophic bacteria, while live cells (with intact membrane) consistently accounted for over 90%. Sequenced 16S rRNA amplicons revealed a predominance of Proteobacteria in summer and autumn (>40%) and a smaller contribution in winter (21-24%), with members of the Alphaproteobacteria class dominating throughout the year. The contribution of the Flavobacteriaceae family was highest in winter (21%), while the Rhodobacteraceae contribution was lowest (6%). Temperature, chlorophyll-a, and dissolved organic carbon concentration were the environmental variables with the greatest effects on bacterial abundance and diversity patterns.

2.
Inter Econ ; 56(3): 167-173, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34103762

RESUMO

Multinational companies are now obliged to deliver an annual report to the tax authorities with information disaggregated by country (country-by-country reporting) in order to show where the assets and workers are allocated, how profits are distributed and to whom taxes are paid. Unfortunately, these reports are not made public in the European Union, thus preventing public scrutiny about the strategies used by multinational companies to displace profits to tax havens. This article applies the Unitary Taxation regime proposed by the European Commission to US multinational companies. The results confirm a strong bias among the profits distribution towards countries with lower corporate tax rates. Likewise, they confirm the capacity of the Unitary Taxation to promote a fairer distribution of tax revenues. These results can be a good contribution to the current Portuguese presidency of the European Union, which managed to gather important support to move forward with the European public country-by-country reporting directive.

3.
Front Microbiol ; 12: 784325, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046913

RESUMO

Despite the key role of heterotrophic bacterioplankton in the biogeochemistry of tropical coastal waters, their dynamics have been poorly investigated in relation to the different dissolved organic matter (DOM) pools usually available. In this study we conducted four seasonal incubations of unfiltered and predator-free seawater (Community and Filtered treatment, respectively) at three Red Sea coastal sites characterized by different dominant DOM sources: Seagrass, Mangrove, and Phytoplankton. Bacterial abundance, growth and physiological status were assessed by flow cytometry and community composition by 16S rRNA gene amplicons. The Seagrass site showed the highest initial abundances (6.93 ± 0.30 × 105 cells mL-1), coincident with maximum DOC concentrations (>100 µmol C L-1), while growth rates peaked at the Mangrove site (1.11 ± 0.09 d-1) and were consistently higher in the Filtered treatment. The ratio between the Filtered and Community maximum bacterial abundance (a proxy for top-down control by protistan grazers) showed minimum values at the Seagrass site (1.05 ± 0.05) and maximum at the Phytoplankton site (1.24 ± 0.30), suggesting protistan grazing was higher in open waters, especially in the first half of the year. Since the Mangrove and Seagrass sites shared a similar bacterial diversity, the unexpected lack of bacterial response to predators removal at the latter site should be explained by differences in DOM characteristics. Nitrogen-rich DOM and fluorescent protein-like components were significantly associated with enhanced specific growth rates along the inshore-offshore gradient. Our study confirms the hypotheses that top-down factors control bacterial standing stocks while specific growth rates are bottom-up controlled in representative Red Sea shallow, oligotrophic ecosystems.

4.
FEMS Microbiol Ecol ; 96(4)2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32149360

RESUMO

Bacterioplankton play a pivotal role in marine ecosystems. However, their temporal dynamics and underlying control mechanisms are poorly understood in tropical regions such as the Red Sea. Here, we assessed the impact of bottom-up (resource availability) and top-down (viruses and heterotrophic nanoflagellates) controls on bacterioplankton abundances by weekly sampling a coastal central Red Sea site in 2017. We monitored microbial abundances by flow cytometry together with a set of environmental variables including temperature, salinity, dissolved organic and inorganic nutrients and chlorophyll a. We distinguished five groups of heterotrophic bacteria depending on their physiological properties relative nucleic acid content, membrane integrity and cell-specific respiratory activity, two groups of Synechococcus cyanobacteria and three groups of viruses. Viruses controlled heterotrophic bacteria for most of the year, as supported by a negative correlation between their respective abundances and a positive one between bacterial mortality rates and mean viral abundances. On the contrary, heterotrophic nanoflagellates abundance covaried with that of heterotrophic bacteria. Heterotrophic nanoflagellates showed preference for larger bacteria from both the high and low nucleic acid content groups. Our results demonstrate that top-down control is fundamental in keeping heterotrophic bacterioplankton abundances low (< 5 × 10 5 cells mL-1) in Red Sea coastal waters.


Assuntos
Ecossistema , Vírus , Clorofila A , Processos Heterotróficos , Oceano Índico , Água do Mar
5.
Front Microbiol ; 10: 1964, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31551946

RESUMO

Phytoplankton biomass and size structure are recognized as key ecological indicators. With the aim to quantify the relationship between these two ecological indicators in tropical waters and understand controlling factors, we analyzed the total chlorophyll-a concentration, a measure of phytoplankton biomass, and its partitioning into three size classes of phytoplankton, using a series of observations collected at coastal sites in the central Red Sea. Over a period of 4 years, measurements of flow cytometry, size-fractionated chlorophyll-a concentration, and physical-chemical variables were collected near Thuwal in Saudi Arabia. We fitted a three-component model to the size-fractionated chlorophyll-a data to quantify the relationship between total chlorophyll and that in three size classes of phytoplankton [pico- (<2 µm), nano- (2-20 µm) and micro-phytoplankton (>20 µm)]. The model has an advantage over other more empirical methods in that its parameters are interpretable, expressed as the maximum chlorophyll-a concentration of small phytoplankton (pico- and combined pico-nanophytoplankton, C p m and C p , n m , respectively) and the fractional contribution of these two size classes to total chlorophyll-a as it tends to zero (D p and D p,n ). Residuals between the model and the data (model minus data) were compared with a range of other environmental variables available in the dataset. Residuals in pico- and combined pico-nanophytoplankton fractions of total chlorophyll-a were significantly correlated with water temperature (positively) and picoeukaryote cell number (negatively). We conducted a running fit of the model with increasing temperature and found a negative relationship between temperature and parameters C p m and C p , n m and a positive relationship between temperature and parameters D p and D p,n . By harnessing the relative red fluorescence of the flow cytometric data, we show that picoeukaryotes, which are higher in cell number in winter (cold) than summer (warm), contain higher chlorophyll per cell than other picophytoplankton and are slightly larger in size, possibly explaining the temperature shift in model parameters, though further evidence is needed to substantiate this finding. Our results emphasize the importance of knowing the water temperature and taxonomic composition of phytoplankton within each size class when understanding their relative contribution to total chlorophyll. Furthermore, our results have implications for the development of algorithms for inferring size-fractionated chlorophyll from satellite data, and for how the partitioning of total chlorophyll into the three size classes may change in a future ocean.

6.
Front Microbiol ; 9: 3244, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30666244

RESUMO

Characterized by some of the highest naturally occurring sea surface temperatures, the Red Sea remains unexplored regarding the dynamics of heterotrophic prokaryotes. Over 16 months, we used flow cytometry to characterize the abundance and growth of four physiological groups of heterotrophic bacteria: membrane-intact (Live), high and low nucleic acid content (HNA and LNA) and actively respiring (CTC+) cells in shallow coastal waters. Chlorophyll a, dissolved organic matter (DOC and DON) concentrations, and their fluorescent properties were also measured as proxies of bottom-up control. We performed short-term incubations (6 days) with the whole microbial community (Community treatment), and with the bacterial community only after removing predators by filtration (Filtered treatment). Initial bacterial abundances ranged from 1.46 to 4.80 × 105 cells mL-1. Total specific growth rates in the Filtered treatment ranged from 0.76 to 2.02 d-1. Live and HNA cells displayed similar seasonal patterns, with higher values during late summer and fall (2.13 and 2.33 d-1, respectively) and lower in late spring (1.02 and 1.01 d-1, respectively). LNA cells were outgrown by the other physiological groups (0.33-1.08 d-1) while CTC+ cells (0.28-1.85 d-1) showed weaker seasonality. The Filtered treatment yielded higher bacterial abundances than the Community treatment in all but 2 of the incubations, and carrying capacities peaked in November 2016 (1.04 × 106 cells mL-1), with minimum values (3.61 × 105 cells mL-1) observed in May 2017. The high temperatures experienced from May through October 2016 (33.4 ± 0.4°C) did not constrain the growth of heterotrophic bacteria. Indeed, bacterial growth efficiencies were positively correlated with environmental temperature, reflecting the presence of more labile compounds (high DON concentrations resulting in lower C:N ratios) in summer. The overall high specific growth rates and the consistently higher carrying capacities in the Filtered treatment suggest that strong top-down control by protistan grazers was the likely cause for the low heterotrophic bacteria abundances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA