Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Heredity (Edinb) ; 128(3): 141-153, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35132209

RESUMO

The role of natural selection in shaping spatial patterns of genetic diversity in the Neotropics is still poorly understood. Here, we perform a genome scan with 24,751 probes targeting 11,026 loci in two Neotropical Bignoniaceae tree species: Handroanthus serratifolius from the seasonally dry tropical forest (SDTF) and Tabebuia aurea from savannas, and compared with the population genomics of H. impetiginosus from SDTF. OutFLANK detected 29 loci in 20 genes with selection signal in H. serratifolius and no loci in T. aurea. Using BayPass, we found evidence of selection in 335 loci in 312 genes in H. serratifolius, 101 loci in 92 genes in T. aurea, and 448 loci in 416 genes in H. impetiginosus. All approaches evidenced several genes affecting plant response to environmental stress and primary metabolic processes. The three species shared no SNPs with selection signal, but we found SNPs affecting the same gene in pair of species. Handroanthus serratifolius showed differences in allele frequencies at SNPs with selection signal among ecosystems, mainly between Caatinga/Cerrado and Atlantic Forest, while H. impetiginosus had one allele fixed across all populations, and T. aurea had similar allele frequency distribution among ecosystems and polymorphism across populations. Taken together, our results indicate that natural selection related to environmental stress shaped the spatial pattern of genetic diversity in the three species. However, the three species have different geographical distribution and niches, which may affect tolerances and adaption, and natural selection may lead to different signatures due to the differences in adaptive landscapes in different niches.


Assuntos
Bignoniaceae , Tabebuia , Bignoniaceae/genética , Ecossistema , Genética Populacional , Metagenômica , Polimorfismo de Nucleotídeo Único , Seleção Genética , Tabebuia/genética , Árvores/genética
2.
Planta ; 252(5): 91, 2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33098500

RESUMO

MAIN CONCLUSION: Bignoniaceae species have conserved chloroplast structure, with hotspots of nucleotide diversity. Several genes are under positive selection, and can be targets for evolutionary studies. Bignoniaceae is one of the most species-rich family of woody plants in Neotropical seasonally dry forests. Here we report the assembly of Handroanthus impetiginosus chloroplast genome and evolutionary comparative analyses of ten Bignoniaceae species representing the genera for which whole-genome chloroplast sequences were available. The chloroplast genome of H. impetiginosus is 159,462 bp in size and has a similar structure compared to the other nine species. The total number of genes was slightly variable amongst the Bignoniaceae, ranging from 124 in H. impetiginosus to 144 in Anemopaegma acutifolium. The inverted repeat (IR) size was variable, ranging from 24,657 bp (Tecomaria capensis) to 40,481 bp (A. acutifolium), due to the contraction and retraction at its boundaries. However, gene boundaries were very similar among the ten species. We found 98 forward and palindromic dispersed repeats, and 85 simple sequence repeats (SSRs). In general, chloroplast sequences were highly conserved, with few nucleotide diversity hotspots in the genes accD, clpP, rpoA, ycf1, ycf2. The phylogenetic analysis based on 77 coding genes was highly consistent with Angiosperm Phylogeny Group (APG) IV. Our results also indicate that most genes are under negative selection or neutral evolution. We found no evidence of branch-site selection, implying that H. impetiginosus is not evolving faster than the other species analyzed, notwithstanding we found site positive selection signal in several genes. These genes can provide targets for evolutionary studies in Bignoniaceae and Lamiales species.


Assuntos
Bignoniaceae , Evolução Molecular , Genoma de Cloroplastos , Tabebuia , Bignoniaceae/classificação , Bignoniaceae/genética , Genoma de Cloroplastos/genética , Repetições de Microssatélites/genética , Filogenia , Tabebuia/classificação , Tabebuia/genética
3.
Front Genet ; 11: 596662, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33424928

RESUMO

Despite the global importance of tropical ecosystems, few studies have identified how natural selection has shaped their megadiversity. Here, we test for the role of adaptation in the evolutionary success of the widespread, highly abundant Neotropical palm Mauritia flexuosa. We used a genome scan framework, sampling 16,262 single-nucleotide polymorphisms (SNPs) with target sequence capture in 264 individuals from 22 populations in rainforest and savanna ecosystems. We identified outlier loci as well as signal of adaptation using Bayesian correlations of allele frequency with environmental variables and detected both selective sweeps and genetic hitchhiking events. Functional annotation of SNPs with selection footprints identified loci affecting genes related to adaptation to environmental stress, plant development, and primary metabolic processes. The strong differences in climatic and soil variables between ecosystems matched the high differentiation and low admixture in population Bayesian clustering. Further, we found only small differences in allele frequency distribution in loci putatively under selection among widespread populations from different ecosystems, with fixation of a single allele in most populations. Taken together, our results indicate that adaptive selective sweeps related to environmental stress shaped the spatial pattern of genetic diversity in M. flexuosa, leading to high similarity in allele frequency among populations from different ecosystems.

4.
Heredity (Edinb) ; 123(2): 117-137, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30755734

RESUMO

The role of natural selection in shaping patterns of diversity is still poorly understood in the Neotropics. We carried out the first genome-wide population genomics study in a Neotropical tree, Handroanthus impetiginosus (Bignoniaceae), sampling 75,838 SNPs by sequence capture in 128 individuals across 13 populations. We found evidences for local adaptation using Bayesian correlations of allele frequency and environmental variables (32 loci in 27 genes) complemented by an analysis of selective sweeps and genetic hitchhiking events using SweepFinder2 (81 loci in 47 genes). Fifteen genes were identified by both approaches. By accounting for population genetic structure, we also found 14 loci with selection signal in a STRUCTURE-defined lineage comprising individuals from five populations, using Outflank. All approaches pinpointed highly diverse and structurally conserved genes affecting plant development and primary metabolic processes. Spatial interpolation forecasted differences in the expected allele frequencies at loci under selection over time, suggesting that H. impetiginosus may track its habitat during climate changes. However, local adaptation through natural selection may also take place, allowing species persistence due to niche evolution. A high genetic differentiation was seen among the H. impetiginosus populations, which, together with the limited power of the experiment, constrains the improved detection of other types of soft selective forces, such as background, balanced, and purifying selection. Small differences in allele frequency distribution among widespread populations and the low number of loci with detectable adaptive sweeps advocate for a polygenic model of adaptation involving a potentially large number of small genome-wide effects.


Assuntos
Adaptação Fisiológica/genética , Variação Genética/genética , Seleção Genética/genética , Árvores/genética , Alelos , Teorema de Bayes , Florestas , Frequência do Gene/genética , Deriva Genética , Genética Populacional/métodos , Genoma de Planta/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Metagenômica/métodos , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA