Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617721

RESUMO

Several ruminant animals rely almost exclusively on the complex polysaccharide matrix from the plant cell wall (CW) as their primary energy source via volatile fatty acids produced through ruminal and some hindgut fermentation processes. The CW contains different types and proportions of polysaccharides, proteins, phenolic compounds, and minerals in their macromolecular structure that influence the rate and extent of fiber digestion and selective retention of particulate matter due to its physical characteristics (buoyancy and comminuting) in the reticulorumen. The biosynthetic formation of the CW dictates possible manipulation mechanisms (targeted plant and microbes selection) and processing methods (physical, chemical, microbial, and enzymatic treatments and the use of genetically engineered bacteria) to increase its digestibility, leading to better utilization of the CW by the ruminant animal and hopefully lower the contribution of ruminants' greenhouse gas emissions. Early studies on lignin biosynthesis have led to more advanced studies focusing on replacing traditional monolignols with homopolymers that are easier to deconstruct or degrade. Concurrently, laboratory methods must be developed, evaluated, and modified to accurately reflect the digestibility and nutritive value of CW brought about by modern manipulation mechanisms or processing methods. However, the laboratory methods must also be reliable, precise, feasible, trivial, easy to implement, and cost-effective, but at the same time environmentally friendly and aware. For instance, although the acid detergent lignin has been demonstrated to behave uniformly as a nutritional entity, its chemical determination and association with carbohydrates still lack consensus. Spectroscopy (near-infrared and Raman) and in vitro gas production techniques have been adopted to assess plant chemical composition and nutritive value, but an incomplete understanding of the impacts caused by disrupting the CW for sample processing still exists. Different variations of multicompartmental and time- and age-dependent mathematical models have been proposed to determine the ruminal rates of degradation and passage of fiber. However, low-quality and incomplete data due to inconsistent marker results used to determine passage rates and transit time of fiber in the gastrointestinal tract have hindered advancements and adoptions of the next generation of computer models to understand ruminal fiber degradation.


The underlying principles of forage cell wall utilization by ruminants have been known for over 50 years, but a significant amount of knowledge of the structure and synthesis of critical components of the plant cell wall, mechanisms and methods to alter its digestibility, and assessment techniques to quantify its components as well as their fermentability has been accumulated in the last 30 years. Such knowledge has even allowed us to make recommendations about the importance of fiber in the diet to improve animal performance and welfare. For instance, some industries (especially the paper mill and biofuels) have attained significant advancements toward modifying plant lignin (a critical component of the cell wall that reduces fermentability) and lignin-degrading microorganisms that could assist the animal nutrition community in increasing the digestibility of forage cell wall without further pretreatment. There are many techniques and technologies available to increase cell wall digestibility and, consequently, animal productivity. However, each has potential and limitations, and when used alone, it may not yield the best outcome. From a ruminant nutrition perspective, combining such techniques and technologies with the next generation of mathematical models seems more likely to yield significant improvements in forage cell wall digestibility.


Assuntos
Ração Animal , Lignina , Animais , Lignina/análise , Ração Animal/análise , Rúmen/metabolismo , Ruminantes , Fibras na Dieta/metabolismo , Parede Celular/química , Fermentação , Digestão
2.
J Anim Sci ; 98(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32386223

RESUMO

Methods have been developed to measure the effectiveness of many roughages, but few evaluations have been conducted with tropical feeds. The objectives of this research were to determine the effectiveness of roughage sources based on bioassay and laboratory methods and identify the biological attributes of the diets that correlate with these methods. Six ruminally cannulated Nellore steers (408 ± 12 kg of BW) were randomly assigned to a 6 × 6 Latin square design within six diets: negative control diet (NC) with aNDF as 10% from corn silage (CS); positive control diet (PC) with aNDF as 20% from CS; and four diets containing 10% aNDF from CS and 10% aNDF from each of the following sources: sugarcane (SC), sugarcane bagasse (SCB), soybean hulls (SH), or low oil cottonseed hulls (LOCH). Physical effectiveness factor (pef, related to the physical characteristics of aNDF) and effectiveness factor (ef, related to the ruminal pH) were determined based on a linear model approach that uses a bioassay method in which CS aNDF was assumed to be the standard fiber source. Laboratory methods to estimate pef of roughage sources were based on the proportion of DM of roughage retained on a 1.18-mm sieve pef(>1.18 mm) or retained on the 8.0-mm Penn State Particle Separator screen pef(>8.0 mm). The pef calculated by the bioassay method (total chewing time and ruminal mat resistance) for CS, SCB, and SC were higher values (P < 0.05) compared with SH and LOCH. The pef(rumen mat) of SC and SCB were higher (P < 0.05) than that of CS, SH, and LOCH. The pef(rumen mat) of LOCH was 61% higher than SH. The ef(rumen pH) of SC and LOCH was higher (P < 0.05) than CS and SH. The pef(chewing, min/d), pef(chewing, min/kg of DM), pef(rumen mat), and ef(rumen pH) positively correlated with rumination time, total chewing time, and ruminal mat resistance (values from transit time in seconds). No correlation was observed (P > 0.05) between pef(>8.0 mm) and rumination time, chewing time, and ruminal pH. The pef calculated using the bioassay method as well as pef (>8.0 mm) were negatively correlated with rumen pH (P > 0.05). The values of the effectiveness of fiber sources obtained in this research can be used as a guideline for nutritionists aiming to replace roughage sources from tropical regions in beef cattle finishing diets. Under our conditions, the pef using the bioassay method or laboratory methods were not adequate in predicting ruminal pH.


Assuntos
Bovinos/fisiologia , Fibras na Dieta/análise , Silagem/análise , Animais , Bioensaio/veterinária , Celulose , Óleo de Sementes de Algodão , Dieta/veterinária , Ingestão de Alimentos , Comportamento Alimentar , Concentração de Íons de Hidrogênio , Masculino , Rúmen/metabolismo , Saccharum , Glycine max , Zea mays
3.
J Anim Sci ; 98(5)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32386225

RESUMO

The objectives of this research were to evaluate the effects of source and concentration of α-amylase-treated neutral detergent fiber (aNDF) from roughage on feed intake, ingestive behavior, and ruminal kinetics in beef cattle receiving high-concentrate diets. Six ruminally cannulated Nellore steers (408 ± 12 kg of body weight) were randomly assigned to a 6 × 6 Latin square design with six diets: 10% aNDF from corn silage (10CS); 20% aNDF from corn silage (20CS); or four diets containing 10% aNDF from corn silage and 10% aNDF from one of the following sources: sugarcane (SC), sugarcane bagasse (SCB), soybean hulls (SH), or low oil cottonseed hulls (LOCH). The parameters of passage and degradation kinetics were estimated based on a two-compartmental model with gamma- and exponential-distributed residence times. The nonlinear models were fitted by nonlinear least squares, and a linear mixed-effects model was fitted to all variables measured from the Latin square design that were related to intake, digestibility, digestion kinetic parameters, and residence times. Mean particle size (MPS) between roughage sources (CS, SCB, and SC) and coproducts (SH and LOCH) was affected (P < 0.05). Dry matter intake (DMI) was not affected (P > 0.05) by 20CS, SC, SH, or LOCH. Steers fed 20CS or LOCH diets had 16% and 20% greater DMI, respectively, (P < 0.05) than steers fed 10CS diet. Steers fed SCB consumed the least dry matter (DM). The SH and LOCH diets had lower MPS values (about 8.77 mm) in comparison to 20CS, SCB, and SC diets (about 13.08 mm) and, consequently, affected (P < 0.05) rumen content, ruminal in situ disappearance, nutrient digestibility, and solid fractional passage rate. Chewing time was affected (P < 0.05) by roughage sources and concentration. Lower values of distance travel inside the rumen (min/cm) were observed (P < 0.05) for the SCB and SC diets in comparison with any other diet. Except for SCB, there was no difference (P > 0.05) in rumen fill, among other treatments. Mean daily ruminal pH was not affected (P > 0.05) by 20CS, SCB, SC, and LOCH diets, and it ranged from 6.1 to 6.23. Total short-chain fatty acids concentration was affected (P < 0.05) by roughage source and concentration. Based on our results, we recommend that under Brazilian finishing diets, replacing roughage sources, except for SCB, based on aNDF concentration of the roughage in high-concentrate diets containing finely ground flint corn does not affect DMI.


Assuntos
Bovinos/fisiologia , Fibras na Dieta/análise , Ácidos Graxos Voláteis/análise , Comportamento Alimentar , Silagem/análise , Animais , Celulose , Óleo de Sementes de Algodão , Dieta/veterinária , Ingestão de Alimentos , Cinética , Masculino , Rúmen/metabolismo , Saccharum , Glycine max , Zea mays
4.
Fungal Biol ; 119(8): 672-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26228558

RESUMO

The nematode-trapping fungus Duddingtonia flagrans has been studied as a possible control method for gastrointestinal nematodes of livestock animals. These fungi capture and infect the nematode by cuticle penetration, immobilization, and digestion of the internal contents. It has been suggested that this sequence of events occurs by a combination of physical and enzymatical activities. The aim of this study was to investigate the participation of proteolytic enzymatic activity during the interaction of the nematophagous fungus D. flagrans with infective larvae of trichostrongylides and the free-living nematode Panagrellus spp. Protease inhibitors used interfered in the predatory activity of D. flagrans. However, only PMSF significantly reduced the mean number of Panagrellus spp. captured by D. flagrans in comparison with the control. The experiment with fluorogenic substrate showed that maximum urokinase activity during the interaction of the fungus with the infective larvae of trichostrongylides or Panagrellus spp. occurred within 7 or 1 h of incubation, respectively. The protease activity, especially of the serine class, may be important during the interaction between the fungus and nematodes.


Assuntos
Duddingtonia/enzimologia , Duddingtonia/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Rabditídios/microbiologia , Serina Proteases/metabolismo , Animais , Larva/microbiologia
5.
An Acad Bras Cienc ; 87(1): 503-17, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25806994

RESUMO

The objective of this study was to evaluate four mathematical models with regards to their fit to lactation curves of Holstein cows from herds raised in the southwestern region of the state of Parana, Brazil. Initially, 42,281 milk production records from 2005 to 2011 were obtained from "Associação Paranaense de Criadores de Bovinos da Raça Holandesa (APCBRH)". Data lacking dates of drying and total milk production at 305 days of lactation were excluded, resulting in a remaining 15,142 records corresponding to 2,441 Holstein cows. Data were sorted according to the parity order (ranging from one to six), and within each parity order the animals were divided into quartiles (Q25%, Q50%, Q75% and Q100%) corresponding to 305-day lactation yield. Within each parity order, for each quartile, four mathematical models were adjusted, two of which were predominantly empirical (Brody and Wood) whereas the other two presented more mechanistic characteristics (models Dijkstra and Pollott). The quality of fit was evaluated by the corrected Akaike information criterion. The Wood model showed the best fit in almost all evaluated situations and, therefore, may be considered as the most suitable model to describe, at least empirically, the lactation curves of Holstein cows raised in Southwestern Parana.


Assuntos
Bovinos/psicologia , Lactação/fisiologia , Modelos Biológicos , Animais , Brasil , Feminino , Paridade , Gravidez , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA