Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39177899

RESUMO

The upper trapezius muscle is often excessively excited during resistance training exercises, increasing the shoulder's liability to musculoskeletal disorders of individuals participating in overhead sports or throwing activities. Different approaches have been proposed for reducing the potentially harmful loading of the upper trapezius. None, however, has been devised to deal directly with the main culprit: the muscle excitation. This non-randomized comparative study explores the feasibility of biofeedback based on surface electromyograms (EMGs) in suppressing undue excitation of the upper trapezius during a seated row exercise. Eight male volunteers were instructed to perform the wide-grip seated row exercise without and with the EMG biofeedback of the upper trapezius. Surface EMGs from the three portions of the trapezius and the serratus anterior were sampled with pairs of surface electrodes. A triaxial accelerometer was positioned on the weight stack for the identification of the exercise phase and repetition. This study showed that during the "with biofeedback" condition, the participants were able to activate the upper trapezius and serratus anterior to a lower degree (~ 10%) compared to the "without biofeedback" condition. Future studies should explore if this can lead to greater gains in muscle performance and/or reduce the risk of shoulder injury.

2.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38931485

RESUMO

After a stroke, antagonist muscle activation during agonist command impedes movement. This study compared measurements of antagonist muscle activation using surface bipolar EMG in the gastrocnemius medialis (GM) and high-density (HD) EMG in the GM and soleus (SO) during isometric submaximal and maximal dorsiflexion efforts, with knee flexed and extended, in 12 subjects with chronic hemiparesis. The coefficients of antagonist activation (CAN) of GM and SO were calculated according to the ratio of the RMS amplitude during dorsiflexion effort to the maximal agonist effort for the same muscle. Bipolar CAN (BipCAN) was compared to CAN from channel-specific (CsCAN) and overall (OvCAN) normalizations of HD-EMG. The location of the CAN centroid was explored in GM, and CAN was compared between the medial and lateral portions of SO. Between-EMG system differences in GM were observed in maximal efforts only, between BipCAN and CsCAN with lower values in BipCAN (p < 0.001), and between BipCAN and OvCAN with lower values in OvCAN (p < 0.05). The CAN centroid is located mid-height and medially in GM, while the CAN was similar in medial and lateral SO. In chronic hemiparesis, the estimates of GM hyperactivity differ between bipolar and HD-EMGs, with channel-specific and overall normalizations yielding, respectively, higher and lower CAN values than bipolar EMG. HD-EMG would be the way to develop personalized rehabilitation programs based on individual antagonist activations.


Assuntos
Eletromiografia , Músculo Esquelético , Paresia , Humanos , Eletromiografia/métodos , Paresia/fisiopatologia , Masculino , Feminino , Músculo Esquelético/fisiopatologia , Pessoa de Meia-Idade , Idoso , Adulto , Doença Crônica , Acidente Vascular Cerebral/fisiopatologia
3.
J Sports Sci ; 42(8): 655-664, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38794799

RESUMO

Climbing is a physically demanding discipline, placing significant loads on the finger flexors. Notwithstanding the documented greater endurance capacity of experienced climbers, the mechanisms explaining these training-induced adaptations remain unknown. We therefore investigate whether two non-competing strategies - muscle adaptation and alternate muscle recruitment - may explain the disparity in endurance capacity in participants with different climbing experience. We analysed high-density surface electromyograms (EMGs) from 38 Advanced and Intermediate climbers, during suspension exercises over three different depths (15, 20, 30 mm) using a half-crimp grip position. From the spatial distribution of changes in MeDian Frequency and Root Mean Square values until failure, we assessed how much and how diffusely the myoelectric manifestations of fatigue took place. Advanced climbers exhibited greater endurance, as evidenced by significantly longer failure time (p < 0.009) and lower changes in MDF values (p < 0.013) for the three grip depths. These changes were confined to a small skin region (nearly 25% of the grid size), centred at variable locations across participants. Moreover, lower MDF changes were significantly associated with longer suspension times. Collectively, our results suggest that muscle adaptation rather than load sharing between and within muscles is more likely to explain the improved endurance in experienced climbers.


Assuntos
Adaptação Fisiológica , Eletromiografia , Dedos , Força da Mão , Montanhismo , Fadiga Muscular , Músculo Esquelético , Resistência Física , Humanos , Resistência Física/fisiologia , Fadiga Muscular/fisiologia , Montanhismo/fisiologia , Músculo Esquelético/fisiologia , Masculino , Adulto , Força da Mão/fisiologia , Dedos/fisiologia , Adulto Jovem , Feminino
4.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475049

RESUMO

The clinical effects of a serious game with electromyography feedback (EMGs_SG) and physical therapy (PT) was investigated prospectively in children with unilateral spastic cerebral palsy (USCP). An additional aim was to better understand the influence of muscle shortening on function. Thirty children with USCP (age 7.6 ± 2.1 years) received four weeks of EMGs_SG sessions 2×/week including repetitive, active alternating training of dorsi- and plantar flexors in a seated position. In addition, each child received usual PT treatment ≤ 2×/week, involving plantar flexor stretching and command strengthening on dorsi- and plantar flexors. Five-Step Assessment parameters, including preferred gait velocity (normalized by height); plantar flexor extensibility (XV1); angle of catch (XV3); maximal active ankle dorsiflexion (XA); and derived coefficients of shortening, spasticity, and weakness for both soleus and gastrosoleus complex (GSC) were compared pre and post treatment (t-tests). Correlations were explored between the various coefficients and gait velocities at baseline. After four weeks of EMGs_SG + PT, there was an increase in normalized gait velocity from 0.72 ± 0.13 to 0.77 ± 0.13 m/s (p = 0.025, d = 0.43), a decrease in coefficients of shortening (soleus, 0.10 ± 0.07 pre vs. 0.07 ± 0.08 post, p = 0.004, d = 0.57; GSC 0.16 ± 0.08 vs. 0.13 ± 0.08, p = 0.003, d = 0.58), spasticity (soleus 0.14 ± 0.06 vs. 0.12 ± 0.07, p = 0.02, d = 0.46), and weakness (soleus 0.14 ± 0.07 vs. 0.11 ± 0.07, p = 0.005, d = 0.55). At baseline, normalized gait velocity correlated with the coefficient of GSC shortening (R = -0.43, p = 0.02). Four weeks of EMGs_SG and PT were associated with improved gait velocity and decreased plantar flexor shortening. A randomized controlled trial comparing EMGs_SG and conventional PT is needed.


Assuntos
Paralisia Cerebral , Neurorretroalimentação , Criança , Humanos , Pré-Escolar , Estudos Prospectivos , Músculo Esquelético , Espasticidade Muscular , Modalidades de Fisioterapia , Marcha/fisiologia , Eletromiografia
5.
Scand J Med Sci Sports ; 33(7): 1104-1115, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36811255

RESUMO

Predictors and mitigators of strain injuries have been studied in sprint-related sports. While the rate of axial strain, and thus running speed, may determine the site of muscle failure, muscle excitation seemingly offers protection against failure. It seems therefore plausible to ask whether running at different speeds changes the distribution of excitation within muscles. Technical limitations undermine, however, the possibility of addressing this issue in high-speed, ecological conditions. Here, we circumvent these limitations with a miniaturized, wireless, multi-channel amplifier, suited for collecting spatio-temporal data and high-density surface electromyograms (EMGs) during overground running. We segmented running cycles while 8 experienced sprinters ran at speeds close to (70% and 85%) and at (100%) their maximum, over an 80 m running track. Then, we assessed the effect of running speed on the distribution of excitation within biceps femoris (BF) and gastrocnemius medialis (GM). Statistical parametric mapping (SPM) revealed a significant effect of running speed on the amplitude of EMGs for both muscles, during late swing and early stance. Paired SPM revealed greater EMG amplitude when comparing 100% with 70% running speed for BF and GM. Regional differences in excitation were observed only for BF, however. As running speed increased from 70% to 100% of the maximum, a greater degree of excitation was observed at more proximal BF regions (from 2% to 10% of the thigh length) during late swing. We discuss how these results, in the context of the literature, support the protective role of pre-excitation against muscle failure, suggesting the site of BF muscle failure may depend on running speed.


Assuntos
Músculos Isquiossurais , Corrida , Humanos , Músculos Isquiossurais/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia , Corrida/fisiologia
6.
J Electromyogr Kinesiol ; 67: 102713, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36215780

RESUMO

Conflictual results between the onset of vastus medialis (VM) and vastus lateralis (VL) excitation may arise from methodological aspects related to the detection of surface electromyograms. In this study we used an array of surface electrodes to assess the effect of detection site, relative to the muscle innervation zone, on the difference between VM and VL excitation onsets. Ten healthy males performed moderate isometric knee extension at 40 % of their maximal voluntary isometric contraction. After the actual VM-VL onset was defined (estimated when action potentials were generated at the neuromuscular junctions of both muscles), we calculated the largest bias that the detection site may introduce in the VM-VL onset estimation. We also assessed whether the location often considered for positioning bipolar electrodes on each muscle leads to VM-VL onset estimations comparable to the actual VM-VL onset. Our main results revealed that a maximum absolute bias of 20.48 ms may be introduced in VM-VL onset estimations due to the electrodes' detection site. In addition, mean differences of âˆ¼ 12 ms in VM-VL onset estimations were attributable to largest possible discrepancies in the paired position of channels with respect to the innervation zone for VL and VM. When considering the classical location for positioning the bipolar electrodes over these muscles, differences error was subtle (∼3.4 ms) when compared with the actual VM-VL onset. Nonetheless, when accounting for the effect of relative differences in electrode position between muscles is not possible, our results suggest that a systematic absolute error of âˆ¼ 12 ms should be considered in future studies regarding VM-VL onset estimations, suggesting that onset differences lower than that might not be clinically relevant.


Assuntos
Músculo Esquelético , Músculo Quadríceps , Masculino , Humanos , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Eletromiografia , Contração Isométrica/fisiologia , Joelho/fisiologia
7.
Exerc Sport Sci Rev ; 49(3): 179-187, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33927163

RESUMO

Biarticular muscles have traditionally been considered to exhibit homogeneous neuromuscular activation. The regional activation of biarticular muscles, as revealed from high-density surface electromyograms, seems however to discredit this notion. We thus hypothesize the regional activation of biarticular muscles may contribute to different actions about the joints they span. We then discuss the mechanistic basis and methodological implications underpinning our hypothesis.


Assuntos
Músculo Esquelético , Fenômenos Biomecânicos , Eletromiografia , Humanos
8.
Exerc Sport Sci Rev ; 49(1): 23-34, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33044329

RESUMO

When sampling electromyograms (EMGs) with one pair of electrodes, it seems implicitly assumed the detected signal reflects the net muscle excitation. However, this assumption is discredited by observations of local muscle excitation. Therefore, we hypothesize that the accurate assessment of muscle excitation requires multiple EMG detection and consideration of electrode-fiber alignment. We advise prudence when drawing inferences from individually collected EMGs.


Assuntos
Contração Muscular , Músculo Esquelético , Eletrodos , Eletromiografia , Humanos
9.
Entropy (Basel) ; 22(5)2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33286301

RESUMO

The surface electromyography (sEMG) records the electrical activity of muscle fibers during contraction: one of its uses is to assess changes taking place within muscles in the course of a fatiguing contraction to provide insights into our understanding of muscle fatigue in training protocols and rehabilitation medicine. Until recently, these myoelectric manifestations of muscle fatigue (MMF) have been assessed essentially by linear sEMG analyses. However, sEMG shows a complex behavior, due to many concurrent factors. Therefore, in the last years, complexity-based methods have been tentatively applied to the sEMG signal to better individuate the MMF onset during sustained contractions. In this review, after describing concisely the traditional linear methods employed to assess MMF we present the complexity methods used for sEMG analysis based on an extensive literature search. We show that some of these indices, like those derived from recurrence plots, from entropy or fractal analysis, can detect MMF efficiently. However, we also show that more work remains to be done to compare the complexity indices in terms of reliability and sensibility; to optimize the choice of embedding dimension, time delay and threshold distance in reconstructing the phase space; and to elucidate the relationship between complexity estimators and the physiologic phenomena underlying the onset of MMF in exercising muscles.

10.
Hum Mov Sci ; 58: 307-314, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29289349

RESUMO

Architectural differences along vastus medialis (VM) and between VM and vastus lateralis (VL) are considered functionally important for the patellar tracking, knee joint stability and knee joint extension. Whether these functional differences are associated with a differential activity of motor units between VM and VL is however unknown. In the present study, we, therefore, investigate neuroanatomical differences in the activity of motor units detected proximo-distally from VM and from the VL muscle. Nine healthy volunteers performed low-level isometric knee extension contractions (20% of their maximum voluntary contraction) following a trapezoidal trajectory. Surface electromyograms (EMGs) were recorded from VM proximal and distal regions and from VL using three linear adhesive arrays of eight electrodes. The firing rate and recruitment threshold of motor units decomposed from EMGs were then compared among muscle regions. Results show that VL motor units reached lower mean firing rates in comparison with VM motor units, regardless of their position within VM (P < .040). No significant differences in firing rate were found between proximal and distal, VM motor units (P = .997). Furthermore, no significant differences in the recruitment threshold were observed for all motor units analysed (P = .108). Our findings possibly suggest the greater potential of VL to generate force, due to its fibres arrangement, may account for the lower discharge rate observed for VL then either proximally or distally detected motor units in VM. Additionally, the present study opens new perspectives on the importance of considering muscle architecture in investigations of the neural aspects of motor behaviour.


Assuntos
Contração Isométrica/fisiologia , Articulação do Joelho/fisiologia , Joelho/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Adulto , Eletrodos , Eletromiografia , Voluntários Saudáveis , Humanos , Masculino , Sistema Nervoso , Adulto Jovem
11.
Biomed Tech (Berl) ; 63(6): 635-645, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-28796636

RESUMO

Previous reports on the relationship between coil orientation and amplitude of motor evoked potential (MEP) in transcranial magnetic stimulation (TMS) did not consider the effect of electrode arrangement. Here we explore this open issue by investigating whether TMS coil orientation affects the amplitude distribution of MEPs recorded from the abductor pollicis brevis (APB) muscle with a bi-dimensional grid of 61 electrodes. Moreover, we test whether conventional mono- and bipolar montages provide representative MEPs compared to those from the grid of electrodes. Our results show that MEPs with the greatest amplitudes were elicited for 45° and 90° coil orientations, i.e. perpendicular to the central sulcus, for all electrode montages. Stimulation with the coil oriented at 135° and 315°, i.e. parallel to the central sulcus, elicited the smallest MEP amplitudes. Additionally, changes in coil orientation did not affect the spatial distribution of MEPs over the muscle extent. It has been shown that conventional electrodes with detection volume encompassing the APB belly may detect representative MEPs for optimal coil orientations. In turn, non-optimal orientations were identified only with the grid of electrodes. High-density electromyography may therefore provide new insights into the effect of coil orientation on MEPs from the APB muscle.


Assuntos
Estimulação Elétrica/métodos , Mãos/fisiologia , Músculo Esquelético/fisiologia , Estimulação Magnética Transcraniana/métodos , Eletromiografia , Humanos
12.
Sci Rep ; 7(1): 13300, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038435

RESUMO

The relatively large pick-up volume of surface electrodes has for long motivated the concern that muscles other than that of interest may contribute to surface electromyograms (EMGs). Recent findings suggest however the pick-up volume of surface electrodes may be smaller than previously appreciated, possibly leading to the detection of surface EMGs insensitive to muscle activity. Here we combined surface and intramuscular recordings to investigate how comparably action potentials from gastrocnemius and soleus are represented in surface EMGs detected with different inter-electrode distances. We computed the firing instants of motor units identified from intramuscular EMGs detected from gastrocnemius and soleus while five participants stood upright. We used these instants to trigger and average surface EMGs detected from multiple skin regions along gastrocnemius. Results from 66 motor units (whereof 31 from gastrocnemius) revealed the surface-recorded amplitude of soleus action potentials was 6% of that of gastrocnemius and did not decrease for inter-electrode distances smaller than 4 cm. Gastrocnemius action potentials were more likely detected for greater inter-electrode distances and their amplitude increased steeply up to 5 cm inter-electrode distance. These results suggest that reducing inter-electrode distance excessively may result in the detection of surface EMGs insensitive to gastrocnemius activity without substantial attenuation of soleus crosstalk.


Assuntos
Eletromiografia , Músculo Esquelético/fisiologia , Posição Ortostática , Adulto , Análise de Dados , Eletrodos , Eletromiografia/métodos , Eletromiografia/normas , Humanos , Masculino , Contração Muscular/fisiologia , Sensibilidade e Especificidade
13.
Sci Rep ; 7: 42011, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176821

RESUMO

Delayed onset of muscle activation can be a descriptor of impaired motor control. Activation onset can be estimated from electromyography (EMG)-registered muscle excitation and from ultrasound-registered muscle motion, which enables non-invasive measurements in deep muscles. However, in voluntary activation, EMG- and ultrasound-detected activation onsets may not correspond. To evaluate this, ten healthy men performed isometric elbow flexion at 20% to 70% of their maximal force. Utilising a multi-channel electrode transparent to ultrasound, EMG and M(otion)-mode ultrasound were recorded simultaneously over the biceps brachii muscle. The time intervals between automated and visually estimated activation onsets were correlated with the regional variation of EMG and muscle motion onset, contraction level and speed. Automated and visual onsets indicated variable time intervals between EMG- and motion onset, median (interquartile range) 96 (121) ms and 48 (72) ms, respectively. In 17% (computed analysis) or 23% (visual analysis) of trials, motion onset was detected before local EMG onset. Multi-channel EMG and M-mode ultrasound revealed regional differences in activation onset, which decreased with higher contraction speed (Spearman ρ ≥ 0.45, P < 0.001). In voluntary activation the heterogeneous motor unit recruitment together with immediate motion transmission may explain the high variation of the time intervals between local EMG- and ultrasound-detected activation onset.


Assuntos
Eletromiografia/métodos , Contração Muscular/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Amplitude de Movimento Articular/fisiologia , Ultrassonografia/métodos , Adulto , Humanos , Contração Isométrica , Masculino , Adulto Jovem
14.
J Electromyogr Kinesiol ; 33: 10-19, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28110043

RESUMO

Recent evidence suggests different regions of the rectus femoris (RF) muscle respond differently to squat exercises. Such differential adaptation may result from neural inputs distributed locally within RF, as previously reported for isometric contractions, walking and in response to fatigue. Here we therefore investigate whether myoelectric activity distributes evenly within RF during squat. Surface electromyograms (EMGs) were sampled proximally and distally from RF with arrays of electrodes, while thirteen healthy volunteers performed 10 consecutive squats with 20% and 40% of their body weight. The root mean square (RMS) value, computed separately for thirds of the concentric and eccentric phases, was considered to assess the proximo-distal changes in EMG amplitude during squat. The channels with variations in EMG amplitude during squat associated with shifts in the muscle innervation zone were excluded from analysis. No significant differences were observed between RF regions when considering squat phases and knee joint angles individually (P>0.16) while a significant interaction between phase and knee joint angle with detection site was observed (P<0.005). For the two loads considered, proximal RMS values were greater during the eccentric phase and for the more flexed knee joint position (P<0.001). Our results suggest inferences on the degree of RF activation during squat must be made cautiously from surface EMGs. Of more practical relevance, there may be a potential for the differential adaption of RF proximal and distal regions to squat exercises.


Assuntos
Exercício Físico , Contração Isométrica , Articulação do Joelho/fisiologia , Músculo Quadríceps/fisiologia , Adulto , Eletromiografia , Humanos , Masculino , Suporte de Carga/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA