Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 38(10): e23639, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38742798

RESUMO

We tested the hypothesis that the biosensor capability of the endometrium is mediated in part, by the effect of different cargo contained in the extracellular vesicles secreted by the conceptus during the peri-implantation period of pregnancy. We transferred Bos taurus taurus embryos of different origin, in vivo (high developmental potential (IV)), in vitro (intermediate developmental potential (IVF)), or cloned (low developmental potential (NT)), into Bos taurus indicus recipients. Extracellular vesicles (EVs) recovered from Day 16 conceptus-conditioned medium were characterized and their microRNA (miRNA) cargo sequenced alongside RNA sequencing of their respective endometria. There were substantial differences in the endometrial response to in vivo versus in vitro and in vivo versus cloned conceptuses (1153 and 334DEGs respectively) with limited differences between in vitro Vs cloned conceptuses (36 DEGs). The miRNA cargo contained in conceptus-derived EVs was similar between all three groups (426 miRNA in common). Only 8 miRNAs were different between in vivo and cloned conceptuses, while only 6 miRNAs were different between in vivo and in vitro-derived conceptuses. Treatment of endometrial epithelial cells with mimic or inhibitors for miR-128 and miR-1298 changed the proteomic content of target cells (96 and 85, respectively) of which mRNAs are altered in the endometrium in vivo (PLXDC2, COPG1, HSPA12A, MCM5, TBL1XR1, and TTF). In conclusion, we have determined that the biosensor capability of the endometrium is mediated in part, by its response to different EVs miRNA cargo produced by the conceptus during the peri-implantation period of pregnancy.


Assuntos
Endométrio , Vesículas Extracelulares , MicroRNAs , Feminino , Endométrio/metabolismo , Endométrio/citologia , Animais , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Bovinos , Gravidez , Técnicas Biossensoriais/métodos , Implantação do Embrião/fisiologia , Embrião de Mamíferos/metabolismo
2.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477993

RESUMO

Information on molecular mechanisms through which sex-steroids regulate oviductal function to support early embryo development is lacking. Here, we hypothesized that the periovulatory endocrine milieu affects the miRNA processing machinery and miRNA expression in bovine oviductal tissues. Growth of the preovulatory follicle was controlled to obtain cows that ovulated a small follicle (SF) and subsequently bore a small corpus luteum (CL; SF-SCL) or a large follicle (LF) and large CL (LF-LCL). These groups differed in the periovulatory plasmatic sex-steroid's concentrations. Ampulla and isthmus samples were collected on day four of the estrous cycle. Abundance of DROSHA, DICER1, and AGO4 transcripts was greater in the ampulla than the isthmus. In the ampulla, transcription of these genes was greater for the SF-SCL group, while the opposite was observed in the isthmus. The expression of the 88 most abundant miRNAs and 14 miRNAs in the ampulla and 34 miRNAs in isthmus were differentially expressed between LF-LCL and SF-SCL groups. Integration of transcriptomic and miRNA data and molecular pathways enrichment showed that important pathways were inhibited in the SF-SCL group due to miRNA control. In conclusion, the endocrine milieu affects the miRNA expression in the bovine oviduct in a region-specific manner.


Assuntos
Bovinos , Tubas Uterinas/efeitos dos fármacos , Hormônios Esteroides Gonadais/farmacologia , MicroRNAs , Animais , Bovinos/genética , Bovinos/metabolismo , Ciclo Estral/efeitos dos fármacos , Ciclo Estral/genética , Tubas Uterinas/metabolismo , Feminino , Perfilação da Expressão Gênica/veterinária , Regulação da Expressão Gênica/efeitos dos fármacos , MicroRNAs/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/metabolismo , Ovulação/efeitos dos fármacos , Ovulação/genética , Processamento Pós-Transcricional do RNA/efeitos dos fármacos , Processamento Pós-Transcricional do RNA/genética , Transcriptoma/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA