Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Europace ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259657

RESUMO

Wolff-Parkinson-White syndrome is a cardiovascular disease characterized by abnormal atrio-ventricular conduction facilitated by accessory pathways (APs). Invasive catheter ablation of the AP represents the primary treatment modality. Accurate localization of APs is crucial for successful ablation outcomes, but current diagnostic algorithms based on the 12 lead electrocardiogram (ECG) often struggle with precise determination of AP locations. In order to gain insight into the mechanisms underlying localization failures observed in current diagnostic algorithms, we employ a virtual cardiac model to elucidate the relationship between AP location and ECG morphology. We first introduce a cardiac model of electrophysiology that was specifically tailored to represent antegrade APs in the form of a short atrio-ventricular bypass tract. Locations of antegrade APs were then automatically swept across both ventricles in the virtual model to generate a synthetic ECG database consisting of 9271 signals. Regional grouping of antegrade APs revealed overarching morphological patterns originating from diverse cardiac regions. We then applied variance-based sensitivity analysis relying on polynomial chaos expansion on the ECG database to mathematically quantify how variation in AP location and timing relates to morphological variation in the 12 lead ECG. We utilized our mechanistic virtual model to showcase limitations of AP localization using standard ECG-based algorithms and provide mechanistic explanations through exemplary simulations. Our findings highlight the potential of virtual models of cardiac electrophysiology not only to deepen our understanding of the underlying mechanisms of Wolff-Parkinson-White syndrome but also to potentially enhance the diagnostic accuracy of ECG-based algorithms and facilitate personalized treatment planning.

3.
Comput Methods Programs Biomed ; 253: 108239, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38823116

RESUMO

BACKGROUND: The excitable gap (EG), defined as the excitable tissue between two subsequent wavefronts of depolarization, is critical for maintaining reentry that underlies deadly ventricular arrhythmias. EG in the His-Purkinje Network (HPN) plays an important role in the maintenance of electrical wave reentry that underlies these arrhythmias. OBJECTIVE: To determine if rapid His bundle pacing (HBP) during reentry reduces the amount of EG in the HPN and ventricular myocardium to suppress reentry maintenance and/or improve defibrillation efficacy. METHODS: In a virtual human biventricular model, reentry was initiated with rapid line pacing followed by HBP delivered for 3, 6, or 9 s at pacing cycle lengths (PCLs) ranging from 10 to 300 ms (n=30). EG was calculated independently for the HPN and myocardium over each PCL. Defibrillation efficacy was assessed for each PCL by stimulating myocardial surface EG with delays ranging from 0.25 to 9 s (increments of 0.25 s, n=36) after the start of HBP. Defibrillation was successful if reentry terminated within 1 s after EG stimulation. This defibrillation protocol was repeated without HBP. To test the approach under different pathological conditions, all protocols were repeated in the model with right (RBBB) or left (LBBB) bundle branch block. RESULTS: Compared to without pacing, HBP for >3 seconds reduced average EG in the HPN and myocardium across a broad range of PCLs for the default, RBBB, and LBBB models. HBP >6 seconds terminated reentrant arrhythmia by converting HPN activation to a sinus rhythm behavior in the default (6/30 PCLs) and RBBB (7/30 PCLs) models. Myocardial EG stimulation during HBP increased the number of successful defibrillation attempts by 3%-19% for 30/30 PCLs in the default model, 3%-6% for 14/30 PCLs in the RBBB model, and 3%-11% for 27/30 PCLs in the LBBB model. CONCLUSION: HBP can reduce the amount of excitable gap and suppress reentry maintenance in the HPN and myocardium. HBP can also improve the efficacy of low-energy defibrillation approaches targeting excitable myocardium. HBP during reentrant arrhythmias is a promising anti-arrhythmic and defibrillation strategy.


Assuntos
Fascículo Atrioventricular , Humanos , Fascículo Atrioventricular/fisiopatologia , Arritmias Cardíacas/terapia , Estimulação Cardíaca Artificial/métodos , Cardioversão Elétrica/métodos , Ventrículos do Coração/fisiopatologia , Modelos Cardiovasculares
4.
Comput Methods Programs Biomed ; 251: 108189, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38728827

RESUMO

BACKGROUND AND OBJECTIVE: Simulation of cardiac electrophysiology (CEP) is an important research tool that is increasingly being adopted in industrial and clinical applications. Typical workflows for CEP simulation consist of a sequence of processing stages starting with building an anatomical model and then calibrating its electrophysiological properties to match observable data. While the calibration stages are common and generalizable, most CEP studies re-implement these steps in complex and highly variable workflows. This lack of standardization renders the execution of computational CEP studies in an efficient, robust, and reproducible manner a significant challenge. Here, we propose ForCEPSS as an efficient and robust, yet flexible, software framework for standardizing CEP simulation studies. METHODS AND RESULTS: Key processing stages of CEP simulation studies are identified and implemented in a standardized workflow that builds on openCARP1 Plank et al. (2021) and the Python-based carputils2 framework. Stages include (i) the definition and initialization of action potential phenotypes, (ii) the tissue scale calibration of conduction properties, (iii) the functional initialization to approximate a limit cycle corresponding to the dynamic reference state according to an experimental protocol, and, (iv) the execution of the CEP study where the electrophysiological response to a perturbation of the limit cycle is probed. As an exemplar application, we employ ForCEPSS to prepare a CEP study according to the Virtual Arrhythmia Risk Prediction protocol used for investigating the arrhythmogenic risk of developing infarct-related ventricular tachycardia (VT) in ischemic cardiomyopathy patients. We demonstrate that ForCEPSS enables a fully automated execution of all stages of this complex protocol. CONCLUSION: ForCEPSS offers a novel comprehensive, standardized, and automated CEP simulation workflow. The high degree of automation accelerates the execution of CEP simulation studies, reduces errors, improves robustness, and makes CEP studies reproducible. Verification of simulation studies within the CEP modeling community is thus possible. As such, ForCEPSS makes an important contribution towards increasing transparency, standardization, and reproducibility of in silico CEP experiments.


Assuntos
Potenciais de Ação , Simulação por Computador , Software , Humanos , Arritmias Cardíacas/fisiopatologia , Eletrofisiologia Cardíaca , Calibragem , Modelos Cardiovasculares , Coração/fisiologia
6.
PLoS Comput Biol ; 19(6): e1011257, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37363928

RESUMO

Cardiac pump function arises from a series of highly orchestrated events across multiple scales. Computational electromechanics can encode these events in physics-constrained models. However, the large number of parameters in these models has made the systematic study of the link between cellular, tissue, and organ scale parameters to whole heart physiology challenging. A patient-specific anatomical heart model, or digital twin, was created. Cellular ionic dynamics and contraction were simulated with the Courtemanche-Land and the ToR-ORd-Land models for the atria and the ventricles, respectively. Whole heart contraction was coupled with the circulatory system, simulated with CircAdapt, while accounting for the effect of the pericardium on cardiac motion. The four-chamber electromechanics framework resulted in 117 parameters of interest. The model was broken into five hierarchical sub-models: tissue electrophysiology, ToR-ORd-Land model, Courtemanche-Land model, passive mechanics and CircAdapt. For each sub-model, we trained Gaussian processes emulators (GPEs) that were then used to perform a global sensitivity analysis (GSA) to retain parameters explaining 90% of the total sensitivity for subsequent analysis. We identified 45 out of 117 parameters that were important for whole heart function. We performed a GSA over these 45 parameters and identified the systemic and pulmonary peripheral resistance as being critical parameters for a wide range of volumetric and hemodynamic cardiac indexes across all four chambers. We have shown that GPEs provide a robust method for mapping between cellular properties and clinical measurements. This could be applied to identify parameters that can be calibrated in patient-specific models or digital twins, and to link cellular function to clinical indexes.


Assuntos
Ventrículos do Coração , Coração , Humanos , Coração/fisiologia , Átrios do Coração , Modelos Cardiovasculares
7.
IEEE Trans Biomed Eng ; 70(7): 2131-2138, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37018681

RESUMO

OBJECTIVE: About half of patients experience recurrence of atrial fibrillation (AF) within three to five years after a single catheter ablation procedure. The suboptimality of the long-term outcomes likely results from the inter-patient variability of AF mechanisms, which can be remedied by improved patient screening. We aim to improve the interpretation of body surface potentials (BSPs), such as 12-lead electrocardiograms and 252-lead BSP maps, to aid preoperative patient screening. METHODS: We developed the Atrial Periodic Source Spectrum (APSS), a novel patient-specific representation based on atrial periodic content, computed on the f-wave segments of patient BSPs, using a second-order blind source separation and a Gaussian Process for regression. With follow-up data, Cox's proportional hazard model was used to select the most relevant feature from preoperative APSSs responsible for AF recurrence. RESULTS: Over 138 persistent AF patients, the presence of highly periodic content with cycle lengths between 220-230 ms or 350-400 ms indicates higher risks of 4-year post-ablation AF recurrence (log-rank test, p-value ). CONCLUSION AND SIGNIFICANCE: Preoperative BSPs demonstrate effective prediction in the long-term outcomes, highlighting their potential for patient screening in AF ablation therapy.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Humanos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Resultado do Tratamento , Recidiva , Fatores de Tempo , Átrios do Coração , Ablação por Cateter/métodos
8.
Front Physiol ; 14: 1154157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089427

RESUMO

Purkinje fibres (PFs) play an important role in some ventricular arrhythmias and acute ventricular stretch can evoke mechanically-induced arrhythmias. We tested whether Purkinje fibres, play a role in these arrhythmias. Pseudo-ECGs were recorded in isolated, Langendorff-perfused, rabbit hearts in which the left ventricular endocardial surface was also irrigated with Tyrode, via an indwelling catheter placed in the left ventricular lumen. The number and period of ectopic activations was measured during left ventricular lumen inflation via an indwelling fluid-filled balloon (500 µL added over 2 s and maintained for 15 s in total). Mechanically-induced arrhythmias occurred in 70% of balloon inflations: they were maximal in the first 5 s and ceased within 15 s. Brief, (10 s) irrigation of the left ventricular lumen with Lugol solution (IK/I2), via the indwelling catheter, reduced inflation-induced ectopics by 98% (p < 0.05). Ablation of endocardial PFs by Lugol was confirmed by Triphenyltetrazolium Chloride staining. Optical mapping revealed the left ventricular epicardial activation patterns of ectopics could have PF-mediated and focal sources. In silico modelling predicted ectopic sources originating in the endocardial region propagate to and through the Purkinje fibres network. Acute distention-induced ectopics are multi-focal, their attenuation by Lugol, their activation patterns and in silico modelling indicate a participation of Purkinje fibres in these arrhythmias.

9.
Comput Biol Med ; 156: 106696, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36870172

RESUMO

Mechanoelectric feedback (MEF) in the heart operates through several mechanisms which serve to regulate cardiac function. Stretch activated channels (SACs) in the myocyte membrane open in response to cell lengthening, while tension generation depends on stretch, shortening velocity, and calcium concentration. How all of these mechanisms interact and their effect on cardiac output is still not fully understood. We sought to gauge the acute importance of the different MEF mechanisms on heart function. An electromechanical computer model of a dog heart was constructed, using a biventricular geometry of 500K tetrahedral elements. To describe cellular behavior, we used a detailed ionic model to which a SAC model and an active tension model, dependent on stretch and shortening velocity and with calcium sensitivity, were added. Ventricular inflow and outflow were connected to the CircAdapt model of cardiovascular circulation. Pressure-volume loops and activation times were used for model validation. Simulations showed that SACs did not affect acute mechanical response, although if their trigger level was decreased sufficiently, they could cause premature excitations. The stretch dependence of tension had a modest effect in reducing the maximum stretch, and stroke volume, while shortening velocity had a much bigger effect on both. MEF served to reduce the heterogeneity in stretch while increasing tension heterogeneity. In the context of left bundle branch block, a decreased SAC trigger level could restore cardiac output by reducing the maximal stretch when compared to cardiac resynchronization therapy. MEF is an important aspect of cardiac function and could potentially mitigate activation problems.


Assuntos
Bloqueio de Ramo , Cálcio , Animais , Cães , Cálcio/metabolismo , Coração/fisiologia , Arritmias Cardíacas , Ventrículos do Coração
10.
J Cardiovasc Electrophysiol ; 34(4): 984-993, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36738149

RESUMO

INTRODUCTION: Conduction system pacing (CSP), in the form of His bundle pacing (HBP) or left bundle branch pacing (LBBP), is emerging as a valuable cardiac resynchronization therapy (CRT) delivery method. However, patient selection and therapy personalization for CSP delivery remain poorly characterized. We aim to compare pacing-induced electrical synchrony during CRT, HBP, LBBP, HBP with left ventricular (LV) epicardial lead (His-optimized CRT [HOT-CRT]), and LBBP with LV epicardial lead (LBBP-optimized CRT [LOT-CRT]) in patients with different conduction disease presentations using computational modeling. METHODS: We simulated ventricular activation on 24 four-chamber heart geometries, including His-Purkinje systems with proximal left bundle branch block (LBBB). We simulated septal scar, LV lateral wall scar, and mild and severe myocardium and LV His-Purkinje system conduction disease by decreasing the conduction velocity (CV) down to 70% and 35% of the healthy CV. Electrical synchrony was measured by the shortest interval to activate 90% of the ventricles (90% of biventricular activation time [BIVAT-90]). RESULTS: Severe LV His-Purkinje conduction disease favored CRT (BIVAT-90: HBP 101.5 ± 7.8 ms vs. CRT 93.0 ± 8.9 ms, p < .05), with additional electrical synchrony induced by HOT-CRT (87.6 ± 6.7 ms, p < .05) and LOT-CRT (73.9 ± 7.6 ms, p < .05). Patients with slow myocardium CV benefit more from CSP compared to CRT (BIVAT-90: CRT 134.5 ± 24.1 ms; HBP 97.1 ± 9.9 ms, p < .01; LBBP: 101.5 ± 10.7 ms, p < .01). Septal but not lateral wall scar made CSP ineffective, while CRT was able to resynchronize the ventricles in the presence of septal scar (BIVAT-90: baseline 119.1 ± 10.8 ms vs. CRT 85.1 ± 14.9 ms, p < .01). CONCLUSION: Severe LV His-Purkinje conduction disease attenuates the benefits of CSP, with additional improvements achieved with HOT-CRT and LOT-CRT. Septal but not lateral wall scars make CSP ineffective.


Assuntos
Fascículo Atrioventricular , Cicatriz , Humanos , Eletrocardiografia/métodos , Sistema de Condução Cardíaco , Miocárdio
11.
Front Physiol ; 14: 734356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755791

RESUMO

Introduction: High pacing frequency or irregular activity due to arrhythmia produces complex optical mapping signals and challenges for processing. The objective is to establish an automated activation time-based analytical framework applicable to optical mapping images of complex electrical behavior. Methods: Optical mapping signals with varying complexity from sheep (N = 7) ventricular preparations were examined. Windows of activation centered on each action potential upstroke were derived using Hilbert transform phase. Upstroke morphology was evaluated for potential multiple activation components and peaks of upstroke signal derivatives defined activation time. Spatially and temporally clustered activation time points were grouped in to wave fronts for individual processing. Each activation time point was evaluated for corresponding repolarization times. Each wave front was subsequently classified based on repetitive or non-repetitive events. Wave fronts were evaluated for activation time minima defining sites of wave front origin. A visualization tool was further developed to probe dynamically the ensemble activation sequence. Results: Our framework facilitated activation time mapping during complex dynamic events including transitions to rotor-like reentry and ventricular fibrillation. We showed that using fixed AT windows to extract AT maps can impair interpretation of the activation sequence. However, the phase windowing of action potential upstrokes enabled accurate recapitulation of repetitive behavior, providing spatially coherent activation patterns. We further demonstrate that grouping the spatio-temporal distribution of AT points in to coherent wave fronts, facilitated interpretation of isolated conduction events, such as conduction slowing, and to derive dynamic changes in repolarization properties. Focal origins precisely detected sites of stimulation origin and breakthrough for individual wave fronts. Furthermore, a visualization tool to dynamically probe activation time windows during reentry revealed a critical single static line of conduction slowing associated with the rotation core. Conclusion: This comprehensive analytical framework enables detailed quantitative assessment and visualization of complex electrical behavior.

12.
Front Physiol ; 13: 1011566, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213223

RESUMO

A significant number of right bundle branch block (RBBB) patients receive cardiac resynchronization therapy (CRT), despite lack of evidence for benefit in this patient group. His bundle (HBP) and left bundle pacing (LBP) are novel CRT delivery methods, but their effect on RBBB remains understudied. We aim to compare pacing-induced electrical synchrony during conventional CRT, HBP, and LBP in RBBB patients with different conduction disturbances, and to investigate whether alternative ways of delivering LBP improve response to pacing. We simulated ventricular activation on twenty-four four-chamber heart geometries each including a His-Purkinje system with proximal right bundle branch block (RBBB). We simulated RBBB combined with left anterior and posterior fascicular blocks (LAFB and LPFB). Additionally, RBBB was simulated in the presence of slow conduction velocity (CV) in the myocardium, left ventricular (LV) or right ventricular (RV) His-Purkinje system, and whole His-Purkinje system. Electrical synchrony was measured by the shortest interval to activate 90% of the ventricles (BIVAT-90). Compared to baseline, HBP significantly improved activation times for RBBB alone (BIVAT-90: 66.9 ± 5.5 ms vs. 42.6 ± 3.8 ms, p < 0.01), with LAFB (69.5 ± 5.0 ms vs. 58.1 ± 6.2 ms, p < 0.01), with LPFB (81.8 ± 6.6 ms vs. 62.9 ± 6.2 ms, p < 0.01), with slow myocardial CV (119.4 ± 11.4 ms vs. 97.2 ± 10.0 ms, p < 0.01) or slow CV in the whole His-Purkinje system (102.3 ± 7.0 ms vs. 75.5 ± 5.2 ms, p < 0.01). LBP was only effective in RBBB cases if combined with anodal capture of the RV septum myocardium (BIVAT-90: 66.9 ± 5.5 ms vs. 48.2 ± 5.2 ms, p < 0.01). CRT significantly reduced activation times in RBBB in the presence of severely slow RV His-Purkinje CV (95.1 ± 7.9 ms vs. 84.3 ± 9.3 ms, p < 0.01) and LPFB (81.8 ± 6.6 ms vs. CRT: 72.9 ± 8.6 ms, p < 0.01). Both CRT and HBP were ineffective with severely slow CV in the LV His-Purkinje system. HBP is effective in RBBB patients with otherwise healthy myocardium and Purkinje system, while CRT and LBP are ineffective. Response to LBP improves when LBP is combined with RV septum anodal capture. CRT is better than HBP only in patients with severely slow CV in the RV His-Purkinje system, while CV slowing of the whole His-Purkinje system and the myocardium favor HBP over CRT.

13.
Front Physiol ; 13: 907190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213235

RESUMO

Computer models capable of representing the intrinsic personal electrophysiology (EP) of the heart in silico are termed virtual heart technologies. When anatomy and EP are tailored to individual patients within the model, such technologies are promising clinical and industrial tools. Regardless of their vast potential, few virtual technologies simulating the entire organ-scale EP of all four-chambers of the heart have been reported and widespread clinical use is limited due to high computational costs and difficulty in validation. We thus report on the development of a novel virtual technology representing the electrophysiology of all four-chambers of the heart aiming to overcome these limitations. In our previous work, a model of ventricular EP embedded in a torso was constructed from clinical magnetic resonance image (MRI) data and personalized according to the measured 12 lead electrocardiogram (ECG) of a single subject under normal sinus rhythm. This model is then expanded upon to include whole heart EP and a detailed representation of the His-Purkinje system (HPS). To test the capacities of the personalized virtual heart technology to replicate standard clinical morphological ECG features under such conditions, bundle branch blocks within both the right and the left ventricles under two different conduction velocity settings are modeled alongside sinus rhythm. To ensure clinical viability, model generation was completely automated and simulations were performed using an efficient real-time cardiac EP simulator. Close correspondence between the measured and simulated 12 lead ECG was observed under normal sinus conditions and all simulated bundle branch blocks manifested relevant clinical morphological features.

15.
PLoS Comput Biol ; 18(3): e1009893, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35312675

RESUMO

Focal sources (FS) are believed to be important triggers and a perpetuation mechanism for paroxysmal atrial fibrillation (AF). Detecting FS and determining AF sustainability in atrial tissue can help guide ablation targeting. We hypothesized that sustained rotors during FS-driven episodes indicate an arrhythmogenic substrate for sustained AF, and that non-invasive electrical recordings, like electrocardiograms (ECGs) or body surface potential maps (BSPMs), could be used to detect FS and AF sustainability. Computer simulations were performed on five bi-atrial geometries. FS were induced by pacing at cycle lengths of 120-270 ms from 32 atrial sites and four pulmonary veins. Self-sustained reentrant activities were also initiated around the same 32 atrial sites with inexcitable cores of radii of 0, 0.5 and 1 cm. FS fired for two seconds and then AF inducibility was tested by whether activation was sustained for another second. ECGs and BSPMs were simulated. Equivalent atrial sources were extracted using second-order blind source separation, and their cycle length, periodicity and contribution, were used as features for random forest classifiers. Longer rotor duration during FS-driven episodes indicates higher AF inducibility (area under ROC curve = 0.83). Our method had accuracy of 90.6±1.0% and 90.6±0.6% in detecting FS presence, and 93.1±0.6% and 94.2±1.2% in identifying AF sustainability, and 80.0±6.6% and 61.0±5.2% in determining the atrium of the focal site, from BSPMs and ECGs of five atria. The detection of FS presence and AF sustainability were insensitive to vest placement (±9.6%). On pre-operative BSPMs of 52 paroxysmal AF patients, patients classified with initiator-type FS on a single atrium resulted in improved two-to-three-year AF-free likelihoods (p-value < 0.01, logrank tests). Detection of FS and arrhythmogenic substrate can be performed from ECGs and BSPMs, enabling non-invasive mapping towards mechanism-targeted AF treatment, and malignant ectopic beat detection with likely AF progression.


Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Eletrocardiografia , Átrios do Coração , Humanos
16.
Comput Biol Med ; 141: 105133, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954609

RESUMO

BACKGROUND: During ventricular fibrillation (VF), targeting the excitable gap (EG) of reentry throughout the myocardium with low-energy surface stimulation shows promise for painless defibrillation. However, the Purkinje network may provide alternative pathways for reentry to evade termination. This study investigates the role of the Purkinje network in painless defibrillation. METHODS: In a computational human biventricular model featuring a Purkinje network, VF was initiated with 4 Hz epicardial pacing. Defibrillation was attempted by stimulating myocardial surface EG with a low-energy 2 ms duration pulse at 2x stimulus capture, which was administered at coupling intervals incremented by 0.25 s between 0.25 and 5 s after VF initiation. Defibrillation was accomplished if reentry ceased ≤ 1 s after the defibrillation pulse. The protocol was repeated with the Purkinje network and myocardial surface EG stimulated simultaneously, and again after uncoupling the Purkinje network from the myocardium. RESULTS: VF with the Purkinje network coupled and uncoupled had comparable dominant frequency in the left (3.81 ± 0.44 versus 3.77 ± 0.53 Hz) and right (3.80 ± 0.37 versus 3.76 ± 0.48 Hz) ventricles. When uncoupling the Purkinje network, myocardial surface EG stimulation terminated VF for all defibrillation pulses. When coupled, myocardial EG surface stimulation terminated VF for only 55% of the defibrillation pulses, but improved to 100% when stimulated simultaneously with Purkinje network EG. Defibrillation failures were attributed to EG evading stimulation in the Purkinje network. CONCLUSIONS: Defibrillation that exclusively targets myocardium can fail due to accessory pathways in the Purkinje network that allow for reentrant activity to evade termination and maintain VF. Painless defibrillation strategies should be adapted to include the Purkinje network.


Assuntos
Cardioversão Elétrica , Ventrículos do Coração , Fibrilação Ventricular , Cardioversão Elétrica/métodos , Ventrículos do Coração/fisiopatologia , Humanos , Miocárdio , Fibrilação Ventricular/terapia
17.
Front Physiol ; 13: 1049214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589454

RESUMO

Biventricular endocardial (BIV-endo) pacing and left bundle pacing (LBP) are novel delivery methods for cardiac resynchronization therapy (CRT). Both pacing methods can be delivered through leadless pacing, to avoid risks associated with endocardial or transvenous leads. We used computational modelling to quantify synchrony induced by BIV-endo pacing and LBP through a leadless pacing system, and to investigate how the right-left ventricle (RV-LV) delay, RV lead location and type of left bundle capture affect response. We simulated ventricular activation on twenty-four four-chamber heart meshes inclusive of His-Purkinje networks with left bundle branch block (LBBB). Leadless biventricular (BIV) pacing was simulated by adding an RV apical stimulus and an LV lateral wall stimulus (BIV-endo lateral) or targeting the left bundle (BIV-LBP), with an RV-LV delay set to 5 ms. To test effect of prolonged RV-LV delays and RV pacing location, the RV-LV delay was increased to 35 ms and/or the RV stimulus was moved to the RV septum. BIV-endo lateral pacing was less sensitive to increased RV-LV delays, while RV septal pacing worsened response compared to RV apical pacing, especially for long RV-LV delays. To investigate how left bundle capture affects response, we computed 90% BIV activation times (BIVAT-90) during BIV-LBP with selective and non-selective capture, and left bundle branch area pacing (LBBAP), simulated by pacing 1 cm below the left bundle. Non-selective LBP was comparable to selective LBP. LBBAP was worse than selective LBP (BIVAT-90: 54.2 ± 5.7 ms vs. 62.7 ± 6.5, p < 0.01), but it still significantly reduced activation times from baseline. Finally, we compared leadless LBP with RV pacing against optimal LBP delivery through a standard lead system by simulating BIV-LBP and selective LBP alone with and without optimized atrioventricular delay (AVD). Although LBP alone with optimized AVD was better than BIV-LBP, when AVD optimization was not possible BIV-LBP outperformed LBP alone, because the RV pacing stimulus shortened RV activation (BIVAT-90: 54.2 ± 5.7 ms vs. 66.9 ± 5.1 ms, p < 0.01). BIV-endo lateral pacing or LBP delivered through a leadless system could potentially become an alternative to standard CRT. RV-LV delay, RV lead location and type of left bundle capture affect leadless pacing efficacy and should be considered in future trial designs.

18.
Heart Rhythm ; 19(2): 308-317, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34648972

RESUMO

BACKGROUND: Strong electric shocks are the gold standard for ventricular defibrillation but are associated with pain and tissue damage. We hypothesized that targeting the excitable gap (EG) of reentry with low-energy surface stimulation is a less damaging and painless alternative for ventricular defibrillation. OBJECTIVE: The purpose of this study was to determine the conditions under which low-energy surface stimulation defibrillates large mammalian ventricles. METHODS: Low-energy surface stimulation was delivered with five electrodes that were 7 cm long and placed 1-2 cm apart on the endocardial and epicardial surfaces of perfused pig left ventricle (LV). Rapid pacing (>4 Hz) was used to induce reentry from a single electrode. A 2 ms defibrillation pulse ≤0.5 A was delivered from all electrodes with a varied time delay from the end of the induction protocol (0.1-5 seconds). Optical mapping was performed and arrhythmia dynamics analyzed. For mechanistic insight, simulations of the VF induction and defibrillation protocols were performed in silico with an LV model emulating the experimental conditions and electrodes placed 0.25-2 cm apart. RESULTS: In living LV, reentry was induced with varying complexity and dominant frequencies ranging between 3.5 to 6.2 Hz over 8 seconds postinitiation. Low-energy defibrillation was achieved with energy <60 mJ and electrode separations up to 2 cm for less complex arrhythmia. In simulations, defibrillation consistently occurred when stimulation captured >75% of the EG, which blocked reentry <2.9 mm in front of the leading reentrant wavefront. CONCLUSION: Defibrillation with low-energy, single-pulse surface stimulation is feasible with energies below the human pain threshold (100 mJ). Optimal defibrillation occurs when arrhythmia complexity is minimal and electrodes capture >75% of the EG.


Assuntos
Cardioversão Elétrica/métodos , Fibrilação Ventricular/terapia , Animais , Suínos
19.
Comput Biol Med ; 140: 105073, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34852973

RESUMO

Lead position is an important factor in determining response to Cardiac Resynchronization Therapy (CRT) in dyssynchronous heart failure (HF) patients. Multipoint pacing (MPP) enables pacing from multiple electrodes within the same lead, improving the potential outcome for patients. Virtual quadripolar lead designs were evaluated by simulating pacing from all combinations of 1 and 2 electrodes along the lead in each virtual patient from cohorts of HF (n = 24) and simulated reverse remodelled (RR, n = 20) patients. Electrical synchrony was assessed by the time 90% of the ventricular myocardium is activated (AT090). Optimal 1 and 2 electrode pacing configurations for AT090 were combined to identify the 4-electrode lead design that maximised benefits across all patients. LV pacing in the HF cohort in all possible single and double electrode locations reduced AT090 by 14.48 ± 5.01 ms (11.92 ± 3.51%). The major determinant of reduction in activation time was patient anatomy. Pacing with a single optimal lead design reduced AT090 more in the HF cohort than the RR cohort (12.68 ± 3.29% vs 10.81 ± 2.34%). Pacing with a single combined HF and RR population-optimised lead design achieves electrical resynchronization with near equivalence to personalised lead designs both in HF and RR anatomies. These findings suggest that although lead configurations have to be tailored to each patient, a single optimal lead design is sufficient to obtain near-optimal results across most patients. This study shows the potential of virtual clinical trials as tools to compare existing and explore new lead designs.

20.
Comput Methods Appl Mech Eng ; 386: 114092, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34630765

RESUMO

Computer models of cardiac electro-mechanics (EM) show promise as an effective means for the quantitative analysis of clinical data and, potentially, for predicting therapeutic responses. To realize such advanced applications methodological key challenges must be addressed. Enhanced computational efficiency and robustness is crucial to facilitate, within tractable time frames, model personalization, the simulation of prolonged observation periods under a broad range of conditions, and physiological completeness encompassing therapy-relevant mechanisms is needed to endow models with predictive capabilities beyond the mere replication of observations. Here, we introduce a universal feature-complete cardiac EM modeling framework that builds on a flexible method for coupling a 3D model of bi-ventricular EM to the physiologically comprehensive 0D CircAdapt model representing atrial mechanics and closed-loop circulation. A detailed mathematical description is given and efficiency, robustness, and accuracy of numerical scheme and solver implementation are evaluated. After parameterization and stabilization of the coupled 3D-0D model to a limit cycle under baseline conditions, the model's ability to replicate physiological behaviors is demonstrated, by simulating the transient response to alterations in loading conditions and contractility, as induced by experimental protocols used for assessing systolic and diastolic ventricular properties. Mechanistic completeness and computational efficiency of this novel model render advanced applications geared towards predicting acute outcomes of EM therapies feasible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA