Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4634, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591854

RESUMO

Deregulated oxidative metabolism is a hallmark of leukaemia. While tyrosine kinase inhibitors (TKIs) such as imatinib have increased survival of chronic myeloid leukaemia (CML) patients, they fail to eradicate disease-initiating leukemic stem cells (LSCs). Whether TKI-treated CML LSCs remain metabolically deregulated is unknown. Using clinically and physiologically relevant assays, we generate multi-omics datasets that offer unique insight into metabolic adaptation and nutrient fate in patient-derived CML LSCs. We demonstrate that LSCs have increased pyruvate anaplerosis, mediated by increased mitochondrial pyruvate carrier 1/2 (MPC1/2) levels and pyruvate carboxylase (PC) activity, in comparison to normal counterparts. While imatinib reverses BCR::ABL1-mediated LSC metabolic reprogramming, stable isotope-assisted metabolomics reveals that deregulated pyruvate anaplerosis is not affected by imatinib. Encouragingly, genetic ablation of pyruvate anaplerosis sensitises CML cells to imatinib. Finally, we demonstrate that MSDC-0160, a clinical orally-available MPC1/2 inhibitor, inhibits pyruvate anaplerosis and targets imatinib-resistant CML LSCs in robust pre-clinical CML models. Collectively these results highlight pyruvate anaplerosis as a persistent and therapeutically targetable vulnerability in imatinib-treated CML patient-derived samples.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Ácido Pirúvico , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Aclimatação , Bioensaio
2.
Leukemia ; 35(6): 1539-1551, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33707653

RESUMO

Folate-mediated one carbon (1C) metabolism supports a series of processes that are essential for the cell. Through a number of interlinked reactions happening in the cytosol and mitochondria of the cell, folate metabolism contributes to de novo purine and thymidylate synthesis, to the methionine cycle and redox defence. Targeting the folate metabolism gave rise to modern chemotherapy, through the introduction of antifolates to treat paediatric leukaemia. Since then, antifolates, such as methotrexate and pralatrexate have been used to treat a series of blood cancers in clinic. However, traditional antifolates have many deleterious side effects in normal proliferating tissue, highlighting the urgent need for novel strategies to more selectively target 1C metabolism. Notably, mitochondrial 1C enzymes have been shown to be significantly upregulated in various cancers, making them attractive targets for the development of new chemotherapeutic agents. In this article, we present a detailed overview of folate-mediated 1C metabolism, its importance on cellular level and discuss how targeting folate metabolism has been exploited in blood cancers. Additionally, we explore possible therapeutic strategies that could overcome the limitations of traditional antifolates.


Assuntos
Antineoplásicos/farmacologia , Carbono/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Neoplasias Hematológicas/tratamento farmacológico , Animais , Neoplasias Hematológicas/metabolismo , Neoplasias Hematológicas/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA