Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 107, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553774

RESUMO

BACKGROUND: Diabetes-induced trained immunity contributes to the development of atherosclerosis and its complications. This study aimed to investigate in humans whether epigenetic signals involved in immune cell activation and inflammation are initiated in hematopoietic stem/progenitor cells (HSPCs) and transferred to differentiated progeny. METHODS AND RESULTS: High glucose (HG)-exposure of cord blood (CB)-derived HSPCs induced a senescent-associated secretory phenotype (SASP) characterized by cell proliferation lowering, ROS production, telomere shortening, up-regulation of p21 and p27genes, upregulation of NFkB-p65 transcription factor and increased secretion of the inflammatory cytokines TNFα and IL6. Chromatin immunoprecipitation assay (ChIP) of p65 promoter revealed that H3K4me1 histone mark accumulation and methyltransferase SetD7 recruitment, along with the reduction of repressive H3K9me3 histone modification, were involved in NFkB-p65 upregulation of HG-HSPCs, as confirmed by increased RNA polymerase II engagement at gene level. The differentiation of HG-HSPCs into myeloid cells generated highly responsive monocytes, mainly composed of intermediate subsets (CD14hiCD16+), that like the cells from which they derive, were characterized by SASP features and similar epigenetic patterns at the p65 promoter. The clinical relevance of our findings was confirmed in sternal BM-derived HSPCs of T2DM patients. In line with our in vitro model, T2DM HSPCs were characterized by SASP profile and SETD7 upregulation. Additionally, they generated, after myeloid differentiation, senescent monocytes mainly composed of proinflammatory intermediates (CD14hiCD16+) characterized by H3K4me1 accumulation at NFkB-p65 promoter. CONCLUSIONS: Hyperglycemia induces marked chromatin modifications in HSPCs, which, once transmitted to the cell progeny, contributes to persistent and pathogenic changes in immune cell function and composition.


Assuntos
Diabetes Mellitus Tipo 2 , Imunidade Treinada , Humanos , Fenótipo Secretor Associado à Senescência , Células-Tronco Hematopoéticas/metabolismo , Antígenos CD34/metabolismo , Epigênese Genética , Diabetes Mellitus Tipo 2/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo
2.
Cardiovasc Diabetol ; 21(1): 51, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397526

RESUMO

BACKGROUND: Glucagon like peptide-1 receptor agonists (GLP-1RAs) have shown to reduce mortality and cardiovascular events in patients with type 2 diabetes mellitus (T2DM). Since the impairment in number and function of vasculotrophic circulating CD34+ hematopoietic stem progenitor cells (HSPCs) in T2D has been reported to increase cardiovascular (CV) risk, we hypothesized that one of the mechanisms whereby GLP-1 RAs exert CV protective effects may be related to the ability to improve CD34+ HSPC function. METHODS: In cord blood (CB)-derived CD34+ HSPC, the expression of GLP-1 receptor (GLP-1R) mRNA, receptor protein and intracellular signaling was evaluated by RT-qPCR and Western Blot respectively. CD34+ HSPCs were exposed to high glucose (HG) condition and GLP-1RA liraglutide (LIRA) was added before as well as after functional impairment. Proliferation, CXCR4/SDF-1α axis activity and intracellular ROS production of CD34+ HSPC were evaluated. RESULTS: CD34+ HSPCs express GLP-1R at transcriptional and protein level. LIRA treatment prevented and rescued HSPC proliferation, CXCR4/SDF-1α axis activity and metabolic imbalance from HG-induced impairment. LIRA stimulation promoted intracellular cAMP accumulation as well as ERK1/2 and AKT signaling activation. The selective GLP-1R antagonist exendin (9-39) abrogated LIRA-dependent ERK1/2 and AKT phosphorylation along with the related protective effects. CONCLUSION: We provided the first evidence that CD34+ HSPC express GLP-1R and that LIRA can favorably impact on cell dysfunction due to HG exposure. These findings open new perspectives on the favorable CV effects of GLP-1 RAs in T2DM patients.


Assuntos
Diabetes Mellitus Tipo 2 , Liraglutida , Quimiocina CXCL12 , Diabetes Mellitus Tipo 2/tratamento farmacológico , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Glucose/toxicidade , Humanos , Hipoglicemiantes/farmacologia , Liraglutida/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células-Tronco/metabolismo
3.
Int J Mol Sci ; 22(3)2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33572602

RESUMO

Hematopoietic stem/progenitor cells (HSPCs) participate in cardiovascular (CV) homeostasis and generate different types of blood cells including lymphoid and myeloid cells. Diabetes mellitus (DM) is characterized by chronic increase of pro-inflammatory mediators, which play an important role in the development of CV disease, and increased susceptibility to infections. Here, we aimed to evaluate the impact of DM on the transcriptional profile of HSPCs derived from bone marrow (BM). Total RNA of BM-derived CD34+ stem cells purified from sternal biopsies of patients undergoing coronary bypass surgery with or without DM (CAD and CAD-DM patients) was sequenced. The results evidenced 10566 expressed genes whose 79% were protein-coding genes, and 21% non-coding RNA. We identified 139 differentially expressed genes (p-value < 0.05 and |log2 FC| > 0.5) between the two comparing groups of CAD and CAD-DM patients. Gene Set Enrichment Analysis (GSEA), based on Gene Ontology biological processes (GO-BP) terms, led to the identification of fourteen overrepresented biological categories in CAD-DM samples. Most of the biological processes were related to lymphocyte activation, chemotaxis, peptidase activity, and innate immune response. Specifically, HSPCs from CAD-DM patients displayed reduced expression of genes coding for proteins regulating antibacterial and antivirus host defense as well as macrophage differentiation and lymphocyte emigration, proliferation, and differentiation. However, within the same biological processes, a consistent number of inflammatory genes coding for chemokines and cytokines were up-regulated. Our findings suggest that DM induces transcriptional alterations in HSPCs, which are potentially responsible of progeny dysfunction.


Assuntos
Doenças Cardiovasculares/imunologia , Doença da Artéria Coronariana/imunologia , Complicações do Diabetes/imunologia , Transcriptoma , Idoso , Antígenos CD34/imunologia , Células Sanguíneas/imunologia , Medula Óssea/imunologia , Diferenciação Celular , Estudos de Coortes , Feminino , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/imunologia , Humanos , Inflamação , Linfócitos/imunologia , Masculino , Pessoa de Meia-Idade , Células Mieloides/imunologia , Fenótipo
4.
J Am Heart Assoc ; 8(9): e010012, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31018749

RESUMO

Background CD 34+ stem/progenitor cells are involved in vascular homeostasis and in neovascularization of ischemic tissues. The number of circulating CD 34+ stem cells is a predictive biomarker of adverse cardiovascular outcomes in diabetic patients. Here, we provide evidence that hyperglycemia can be "memorized" by the stem cells through epigenetic changes that contribute to onset and maintenance of their dysfunction in diabetes mellitus. Methods and Results Cord-blood-derived CD 34+ stem cells exposed to high glucose displayed increased reactive oxygen species production, overexpression of p66shc gene, and downregulation of antioxidant genes catalase and manganese superoxide dismutase when compared with normoglycemic cells. This altered oxidative state was associated with impaired migration ability toward stromal-cell-derived factor 1 alpha and reduced protein and mRNA expression of the C-X-C chemokine receptor type 4 ( CXCR 4) receptor. The methylation analysis by bisulfite Sanger sequencing of the CXCR 4 promoter revealed a significant increase in DNA methylation density in high-glucose CD 34+ stem cells that negatively correlated with mRNA expression (Pearson r=-0.76; P=0.004). Consistently, we found, by chromatin immunoprecipitation assay, a more transcriptionally inactive chromatin conformation and reduced RNA polymerase II engagement on the CXCR 4 promoter. Notably, alteration of CXCR 4 DNA methylation, as well as transcriptional and functional defects, persisted in high-glucose CD 34+ stem cells despite recovery in normoglycemic conditions. Importantly, such an epigenetic modification was thoroughly confirmed in bone marrow CD 34+ stem cells isolated from sternal biopsies of diabetic patients undergoing coronary bypass surgery. Conclusions CD 34+ stem cells "memorize" the hyperglycemic environment in the form of epigenetic modifications that collude to alter CXCR 4 receptor expression and migration.


Assuntos
Metilação de DNA , Diabetes Mellitus/genética , Hiperglicemia/genética , Receptores CXCR4/genética , Células-Tronco/metabolismo , Idoso , Antígenos CD34 , Células da Medula Óssea/metabolismo , Catalase/genética , Quimiocina CXCL12/genética , Imunoprecipitação da Cromatina , Ponte de Artéria Coronária , Doença da Artéria Coronariana/cirurgia , Diabetes Mellitus/metabolismo , Regulação para Baixo , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Hiperglicemia/metabolismo , Técnicas In Vitro , Pessoa de Meia-Idade , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores CXCR4/metabolismo , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src/genética , Superóxido Dismutase/genética , Regulação para Cima
5.
Stem Cell Res ; 28: 21-24, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29414413

RESUMO

Becker muscular dystrophy (BMD) is a dystrophinopathy caused by mutations in the dystrophin gene on chromosome Xp21. BMD mutations result in truncated semi-functional dystrophin isoforms. Consequently, less severe clinical symptoms become apparent later in life compared to Duchenne muscular dystrophy. Dermal fibroblasts from a BMD patient were electroporated with episomal plasmids containing reprogramming factors to create the induced pluripotent stem cell line: CCMi002BMD-A-9 that showed pluripotent markers, were karyotypically normal and capable of trilineage differentiation. MLPA analyses performed on DNA extracted from CCMi002BMD-A-9 showed an in-frame deletion of exons 45 to 55 (CCMi002BMD-A-9 Δ45-55).


Assuntos
Técnicas de Cultura de Células/métodos , Distrofina/genética , Éxons/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Deleção de Sequência/genética , Adulto , Humanos , Masculino
6.
Stem Cell Res ; 25: 128-131, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29127875

RESUMO

Duchenne muscular dystrophy (DMD) is caused by abnormalities in the dystrophin gene and is clinically characterised by childhood muscle degeneration and cardiomyopathy. We produced an induced pluripotent stem cell line from a DMD patient's dermal fibroblasts by electroporation with episomal vectors containing: hL-MYC, hLIN28, hSOX2, hKLF4, hOCT3/4. The resultant DMD iPSC line (CCMi001DMD-A-3) displayed iPSC morphology, expressed pluripotency markers, possessed trilineage differentiation potential and was karyotypically normal. MLPA analyses performed on DNA extracted from CCMi001DMD-A-3 showed a deletion of exons 49 and 50 (CCMi001DMD-A-3, ∆49, ∆50).


Assuntos
Éxons/genética , Células-Tronco Pluripotentes Induzidas/citologia , Distrofia Muscular de Duchenne/enzimologia , Adulto , Células Cultivadas , Reprogramação Celular/genética , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino
7.
Anal Biochem ; 519: 84-91, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28007399

RESUMO

The chemokine receptor CXCR4 plays a key role in the bone marrow microenvironment maintenance and in the hematopoietic stem and progenitor cells migration. In addition, CXCR4 is expressed in a broad spectrum of solid tumors where its methylation state has been recently proposed as a biomarker for cancer prognosis. To evaluate methylation status of CXCR4 promoter we developed a sensitive, accurate, specific and cost-effective two-step PCR method that does not require any specific equipment other than a conventional real-time PCR instrument. The principle of the technique relies on a novel normalization strategy which allows the detection and quantification of small methylation differences among pre-amplified DNA samples deriving from low amount of starting material. In addition, the analysis of melting curve profiles of PCR products provides additional information about the methylation status of CpG sites in between the primers. Finally, the principle of this technique can potentially be adapted for the investigation of the methylation status of any other DNA region.


Assuntos
Ilhas de CpG/genética , Metilação de DNA , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Receptores CXCR4/genética , Primers do DNA/química , Primers do DNA/genética , Citometria de Fluxo , Humanos , Neoplasias/genética , Reação em Cadeia da Polimerase em Tempo Real/economia , Receptores CXCR4/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA