Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0299686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39058678

RESUMO

Transpiration efficiency (TE), the biomass produced per unit of water transpired, is a key trait for crop performance under limited water. As water becomes scarce, increasing TE would contribute to increase crop drought tolerance. This study is a first step to explore pearl millet genotypic variability for TE on a large and representative diversity panel. We analyzed TE on 537 pearl millet genotypes, including inbred lines, test-cross hybrids, and hybrids bred for different agroecological zones. Three lysimeter trials were conducted in 2012, 2013 and 2015, to assess TE both under well-watered and terminal-water stress conditions. We recorded grain yield to assess its relationship with TE. Up to two-fold variation for TE was observed over the accessions used. Mean TE varied between inbred and testcross hybrids, across years and was slightly higher under water stress. TE also differed among hybrids developed for three agroecological zones, being higher in hybrids bred for the wetter zone, underlining the importance of selecting germplasm according to the target area. Environmental conditions triggered large Genotype x Environment (GxE) interactions, although TE showed some high heritability. Transpiration efficiency was the second contributor to grain yield after harvest index, highlighting the importance of integrating it into pearl millet breeding programs. Future research on TE in pearl millet should focus (i) on investigating the causes of its plasticity i.e. the GxE interaction (ii) on studying its genetic basis and its association with other important physiological traits.


Assuntos
Genótipo , Pennisetum , Transpiração Vegetal , Pennisetum/genética , Pennisetum/fisiologia , Pennisetum/crescimento & desenvolvimento , Transpiração Vegetal/fisiologia , Secas , Água/metabolismo , Biomassa , Melhoramento Vegetal/métodos , Variação Genética
2.
Elife ; 122024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294329

RESUMO

Seedling root traits impact plant establishment under challenging environments. Pearl millet is one of the most heat and drought tolerant cereal crops that provides a vital food source across the sub-Saharan Sahel region. Pearl millet's early root system features a single fast-growing primary root which we hypothesize is an adaptation to the Sahelian climate. Using crop modeling, we demonstrate that early drought stress is an important constraint in agrosystems in the Sahel where pearl millet was domesticated. Furthermore, we show that increased pearl millet primary root growth is correlated with increased early water stress tolerance in field conditions. Genetics including genome-wide association study and quantitative trait loci (QTL) approaches identify genomic regions controlling this key root trait. Combining gene expression data, re-sequencing and re-annotation of one of these genomic regions identified a glutaredoxin-encoding gene PgGRXC9 as the candidate stress resilience root growth regulator. Functional characterization of its closest Arabidopsis homolog AtROXY19 revealed a novel role for this glutaredoxin (GRX) gene clade in regulating cell elongation. In summary, our study suggests a conserved function for GRX genes in conferring root cell elongation and enhancing resilience of pearl millet to its Sahelian environment.


Pearl millet is a staple food for over 90 million people living in regions of Africa and India that typically experience high temperatures and little rainfall. It was domesticated about 4,500 years ago in the Sahel region of West Africa and is one of the most heat and drought tolerant cereal crops worldwide. In most plants, organs known as roots absorb water and essential nutrients from the soil. Young pearl millet plants develop a fast-growing primary root, but it is unclear how this unique feature helps the crop to grow in hot and dry conditions. Using weather data collected from the Sahel over a 20-year period, Fuente, Grondin et al. predicted by modelling that early drought stress is the major factor limiting pearl millet growth and yield in this region. Field experiments found that plants with primary roots that grow faster within soil were better at tolerating early drought than those with slower growing roots. Further work using genetic approaches revealed that a gene known as PgGRXC9 promotes the growth of the primary root. To better understand how this gene works, the team examined a very similar gene in a well-studied model plant known as Arabidopsis. This suggested that PgGRXC9 helps the primary root to grow by stimulating cell elongation within the root. Since it is well adapted to dry conditions, pearl millet is expected to play an important role in helping agriculture adjust to climate change. The findings of Fuente, Grondin et al. may be used by plant breeders to create more resilient and productive varieties of pearl millet.


Assuntos
Arabidopsis , Pennisetum , Secas , Pennisetum/genética , Glutarredoxinas , Estudo de Associação Genômica Ampla , Produtos Agrícolas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA