Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39129290

RESUMO

INTRODUCTION: Sorafenib (Sor) is the first-line treatment option in clinics for treating advanced unresectable hepatocellular carcinoma (HCC). However, acquired chemoresistance and adverse side effects associated with Sor monotherapy limit its clinical benefits. We have previously reported the exceptional anti-HCC potential of uttroside B (Utt-B), a furostanol saponin isolated in our lab from Solanum nigrum Linn. leaves. The current study has evaluated the supremacy of a combinatorial regimen of Sor and Utt-B over Sor monotherapy. METHODS: MTT assay was used for In vitro cytotoxicity studies. A clonogenic assay was conducted to assess the anti-proliferative effect of the combination. Annexin V/PI staining, confocal microscopy, FACS cell cycle analysis, and Western blotting experiments were performed to validate the pro-apoptotic potential of the combination in HepG2 and Huh7 cell lines. Pharmacological safety evaluation was performed in Swiss albino mice. RESULTS: Our results indicate that Utt-B augments Sor-induced cytotoxicity in HepG2 and Huh7 cells. The combination inhibits the proliferation of liver cancer cells by inducing apoptosis through activation of the caspases 7 and 3, leading to PARP cleavage. Furthermore, the combination does not induce any acute toxicity in vivo, even at a dose five times that of the effective therapeutic dose. CONCLUSION: Our results highlight the potential of Utt-B as an effective chemosensitizer, which can augment the efficacy of Sor against HCC and circumvent Sor-induced toxic side effects. Moreover, this is the first and only report to date on the chemosensitizing potential of Utt-B and the only report that demonstrates the therapeutic efficacy and pharmacological safety of a novel combinatorial regimen involving Utt-B and Sor for combating HCC.

2.
Curr Med Chem ; 31(32): 5165-5177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549529

RESUMO

Immunotherapy is a newly emerging and effective approach to treating cancer. However, there are many challenges associated with using checkpoint inhibitors in this treatment strategy. The component of the tumor microenvironment plays a crucial role in antitumor immune response, regulating tumor immune surveillance and immunological evasion. Natural products/phytochemicals can modulate the tumor microenvironment and function as immunomodulatory agents. In clinical settings, there is a strong need to develop synergistic combination regimens using natural products that can effectively enhance the therapeutic benefits of immune checkpoint inhibitors relative to their effectiveness as single therapies. The review discusses immunotherapy, its side effects, and a summary of evidence suggesting the use of natural products to modulate immune checkpoint pathways.


Assuntos
Produtos Biológicos , Imunoterapia , Neoplasias , Compostos Fitoquímicos , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/terapia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia , Animais
3.
J Adv Res ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38142035

RESUMO

INTRODUCTION: Acid ceramidase (hereafter referred as ASAH1) is an enzyme in sphingolipid metabolism that converts pro-survival ceramide into sphingosine. ASAH1 has been shown to be overexpressed in certain cancers. However, the role of ASAH1 in colorectal cancer still remain elusive. OBJECTIVE: The present study is aimed to understand how ASAH1 regulates colorectal cancer (CRC) progression and resistance to checkpoint inhibitor therapy. METHODS: Both pharmacological and genetic silencing of ASAH1 was used in the study. In vitro experiments were done on human and mouse CRC cell lines. The in vivo studies were conducted in NOD-SCID and BALB/c mice models. The combination of ASAH1 inhibitor and checkpoint inhibitor was tested using a syngeneic tumor model of CRC. Transcriptomic and metabolomic analyses were done to understand the effect of ASAH1 silencing. RESULTS: ASAH1 is overexpressed in human CRC cases, and silencing the expression resulted in the induction of immunological cell death (ICD) and mitochondrial stress. The ASAH1 inhibitor (LCL-521), either as monotherapy or in combination with an anti-PD-1 antibody, resulted in reduction of tumors and, through induction of type I and II interferon response, activation of M1 macrophages and T cells, leading to enhanced infiltration of cytotoxic T cells. Our findings supported that the combination of LCL-521 and ICIs, which enhances the antitumor responses, and ASAH1 can be a druggable target in CRC.

4.
Biomolecules ; 11(5)2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33947113

RESUMO

Cardamonin is a naturally occurring chalcone, majorly from the Zingiberaceae family, which includes a wide range of spices from India. Herein, we investigated the anti-inflammatory property of cardamonin using different in vitro and in vivo systems. In RAW 264.7 cells, treatment with cardamonin showed a reduced nitrous oxide production without affecting the cell viability and decreased the expression of iNOS, TNF-α, and IL-6, and inhibited NF-kB signaling which emphasizes the role of cardamonin as an anti-inflammatory molecule. In a mouse model of dextran sodium sulfate (DSS)-induced colitis, cardamonin treatment protected the mice from colitis. Subsequently, we evaluated the therapeutic potential of this chalcone in a colitis-associated colon cancer model. We performed microRNA profiling in the different groups and observed that cardamonin modulates miRNA expression, thereby inhibiting tumor formation. Together, our findings indicate that cardamonin has the potential to be considered for future therapy against colorectal cancer.


Assuntos
Anti-Inflamatórios/administração & dosagem , Chalconas/administração & dosagem , Colite/tratamento farmacológico , Neoplasias Colorretais/tratamento farmacológico , MicroRNAs/genética , Animais , Anti-Inflamatórios/farmacologia , Azoximetano/efeitos adversos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chalconas/farmacologia , Colite/induzido quimicamente , Colite/complicações , Colite/metabolismo , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/genética , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Camundongos , Óxido Nitroso/metabolismo , Células RAW 264.7 , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Células THP-1
5.
Curr Top Med Chem ; 19(17): 1512-1520, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30827244

RESUMO

Sphingolipids are important constituents of the eukaryotic cell membrane which govern various signaling pathways related to different aspects of cell survival. Ceramide and Sphingosine are interconvertible sphingolipid metabolites, out of which Ceramide is pro-apoptotic and sphingosine is anti-apoptotic in nature. The conversion of ceramide to sphingosine is mediated by Acid Ceramidase (ASAH1) thus maintaining a rheostat between a tumor suppressor and a tumor promoter. This rheostat is completely altered in many tumors leading to uncontrolled proliferation. This intriguing property of ASAH1 can be used by cancer cells to their advantage, by increasing the expression of the tumor promoter, sphingosine inside cells, thus creating a favorable environment for cancer growth. The different possibilities through which this enzyme serves its role in formation, progression and resistance of different types of cancers will lead to the possibility of making Acid Ceramidase a promising drug target. This review discusses the current understanding of the role of acid ceramidase in cancer progression, metastasis and resistance, strategies to develop novel natural and synthetic inhibitors of ASAH1 and their usefulness in cancer therapy.


Assuntos
Ceramidase Ácida/antagonistas & inibidores , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Ceramidase Ácida/metabolismo , Animais , Antineoplásicos/química , Inibidores Enzimáticos/química , Humanos , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA