Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Neuropathol Appl Neurobiol ; 50(3): e12984, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38783575

RESUMO

AIMS: The methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter region is essential in evaluating the prognosis and predicting the drug response in patients with glioblastoma. In this study, we evaluated the utility of using nanopore long-read sequencing as a method for assessing methylation levels throughout the MGMT CpG-island, compared its performance to established techniques and demonstrated its clinical applicability. METHODS: We analysed 165 samples from CNS tumours, focusing on the MGMT CpG-island using nanopore sequencing. Oxford Nanopore Technologies (ONT) MinION and PromethION flow cells were employed for single sample or barcoded assays, guided by a CRISPR/Cas9 protocol, adaptive sampling or as part of a whole genome sequencing assay. Methylation data obtained through nanopore sequencing were compared to results obtained via pyrosequencing and methylation bead arrays. Hierarchical clustering was applied to nanopore sequencing data for patient stratification. RESULTS: Nanopore sequencing displayed a strong correlation (R2 = 0.91) with pyrosequencing results for the four CpGs of MGMT analysed by both methods. The MGMT-STP27 algorithm's classification was effectively reproduced using nanopore data. Unsupervised hierarchical clustering revealed distinct patterns in methylated and unmethylated samples, providing comparable survival prediction capabilities. Nanopore sequencing yielded high-confidence results in a rapid timeframe, typically within hours of sequencing, and extended the analysis to all 98 CpGs of the MGMT CpG-island. CONCLUSIONS: This study presents nanopore sequencing as a valid and efficient method for determining MGMT promotor methylation status. It offers a comprehensive view of the MGMT promoter methylation landscape, which enables the identification of potentially clinically relevant subgroups of patients. Further exploration of the clinical implications of patient stratification using nanopore sequencing of MGMT is warranted.


Assuntos
Metilação de DNA , Sequenciamento por Nanoporos , Regiões Promotoras Genéticas , Humanos , Sequenciamento por Nanoporos/métodos , Regiões Promotoras Genéticas/genética , Ilhas de CpG/genética , Proteínas Supressoras de Tumor/genética , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Neoplasias Encefálicas/genética , Feminino , Masculino , Glioblastoma/genética , Idoso
2.
J Neurooncol ; 2024 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-38762830

RESUMO

PURPOSE: Glioblastoma (GBM) is an aggressive brain tumor in which primary therapy is standardized and consists of surgery, radiotherapy (RT), and chemotherapy. However, the optimal time from surgery to start of RT is unknown. A high-grade glioma cancer patient pathway (CPP) was implemented in Norway in 2015 to avoid non-medical delays and regional disparity, and to optimize information flow to patients. This study investigated how CPP affected time to RT after surgery and overall survival. METHODS: This study included consecutive GBM patients diagnosed in South-Eastern Norway Regional Health Authority from 2006 to 2019 and treated with RT. The pre CPP implementation group constituted patients diagnosed 2006-2014, and the post CPP implementation group constituted patients diagnosed 2016-2019. We evaluated timing of RT and survival in relation to CPP implementation. RESULTS: A total of 1212 patients with GBM were included. CPP implementation was associated with significantly better outcomes (p < 0.001). Median overall survival was 12.9 months. The odds of receiving RT within four weeks after surgery were significantly higher post CPP implementation (p < 0.001). We found no difference in survival dependent on timing of RT below 4, 4-6 or more than 6 weeks (p = 0.349). Prognostic factors for better outcomes in adjusted analyses were female sex (p = 0.005), younger age (p < 0.001), solitary tumors (p = 0.008), gross total resection (p < 0.001), and higher RT dose (p < 0.001). CONCLUSION: CPP implementation significantly reduced time to start of postoperative RT. Survival was significantly longer in the period after the CPP implementation, however, timing of postoperative RT relative to time of surgery did not impact survival.

3.
Acta Oncol ; 63: 83-94, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38501768

RESUMO

BACKGROUND: Surveillance of incidence and survival of central nervous system tumors is essential to monitor disease burden and epidemiological changes, and to allocate health care resources. Here, we describe glioma incidence and survival trends by histopathology group, age, and sex in the Norwegian population. MATERIAL AND METHODS: We included patients with a histologically verified glioma reported to the Cancer Registry of Norway from 2002 to 2021 (N = 7,048). Population size and expected mortality were obtained from Statistics Norway. Cases were followed from diagnosis until death, emigration, or 31 December 2022, whichever came first. We calculated age-standardized incidence rates (ASIR) per 100,000 person-years and age-standardized relative survival (RS).  Results: The ASIR for histologically verified gliomas was 7.4 (95% CI: 7.3-7.6) and was higher for males (8.8; 95% CI: 8.5-9.1) than females (6.1; 95% CI: 5.9-6.4). Overall incidence was stable over time. Glioblastoma was the most frequent tumor entity (ASIR = 4.2; 95% CI: 4.1-4.4). Overall, glioma patients had a 1-year RS of 63.6% (95% CI: 62.5-64.8%), and a 5-year RS of 32.8% (95% CI: 31.6-33.9%). Females had slightly better survival than males. For most entities, 1- and 5-year RS improved over time (5-year RS for all gliomas 29.0% (2006) and 33.1% (2021), p < 0.001). Across all tumor types, the RS declined with increasing age at diagnosis. INTERPRETATION: The incidence of gliomas has been stable while patient survival has increased over the past 20 years in Norway. As gliomas represent a heterogeneous group of primary CNS tumors, regular reporting from cancer registries at the histopathology group level is important to monitor disease burden and allocate health care resources in a population.


Assuntos
Glioma , Masculino , Feminino , Humanos , Incidência , Estudos de Coortes , Glioma/epidemiologia , Sistema de Registros , Noruega/epidemiologia
4.
Cancers (Basel) ; 15(24)2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38136371

RESUMO

Glioblastoma (GBM) is an aggressive and highly heterogeneous primary brain tumor. Glioma stem cells represent a subpopulation of tumor cells with stem cell traits that are presumed to be the cause of tumor relapse. There exists complex tumor heterogeneity in drug sensitivity patterns between glioma stem cell (GSC) cultures derived from different patients. Here, we describe that heterogeneity also exists between GSC cultures derived from multiple biopsies within a single tumor. From biopsies harvested within spatially distinct regions representing the entire tumor mass, we established seven GSC cultures and compared their stem cell properties, mutations, gene expression profiles, and drug sensitivity patterns against 115 different anticancer drugs. The results were compared to 14 GSC cultures derived from other patients. Between the multiregional-derived GSC cultures, we observed only minor differences in their phenotype, proliferative capacity, and global gene expression. Further, they displayed intratumoral heterogeneity in mutational profiles and sensitivity patterns to anticancer drugs. This heterogeneity, however, did not exceed the extensive heterogeneity found between GSC cultures derived from other GBM patients. Our results suggest that the use of GSC cultures from one single focal biopsy may underestimate the overall complexity of the GSC population and display the importance of including GSC cultures reflecting the entire tumor mass in drug screening strategies.

5.
Neurooncol Pract ; 10(6): 555-564, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38026582

RESUMO

Background: New treatment modalities have not been widely adopted for patients with glioblastoma (GBM) after the addition of temozolomide to radiotherapy. We hypothesize that increased extent of resection (EOR) has resulted in improved survival for surgically treated patients with glioblastoma at the population level. Methods: Retrospective analysis of adult patients operated for glioblastoma in the population of South-Eastern Norway. Patients were stratified into Pre-temozolomide- (2003-2005), temozolomide- (2006-2012), and resection-focused period (2013-2019) and evaluated according to age and EOR. Results: The study included 1657 adult patients operated on for supratentorial glioblastoma. The incidence of histologically confirmed glioblastoma increased from 3.7 in 2003 to 5.3 per 100 000 in 2019. The median survival was 11.4 months. Complete resection of contrast-enhancing tumor (CRCET) was achieved in 386 patients, and this fraction increased from 13% to 32% across the periods. Significant improvement in median survival was found between the first 2 periods and the last (10.5 and 10.6 vs. 12.3 months; P < .01), with a significant increase in 3- and 5-year survival probability to 12% and 6% (P < .01). Patients with CRCET survived longer than patients with non-CRCET (16.1 vs. 10.8 months; P < .001). The median survival doubled in patients ≥70 years and (12.1 months). Survival was similar between the time periods in patients where CRCET was achieved. Conclusions: We demonstrate an improved survival of GBM patients at the population level associated with an increased fraction of patients with CRCET. The data support the importance of CRCET to improve glioblastoma patient outcomes.

6.
BMJ Open ; 13(3): e070071, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36940951

RESUMO

INTRODUCTION: The use of proton therapy increases globally despite a lack of randomised controlled trials demonstrating its efficacy and safety. Proton therapy enables sparing of non-neoplastic tissue from radiation. This is principally beneficial and holds promise of reduced long-term side effects. However, the sparing of seemingly non-cancerous tissue is not necessarily positive for isocitrate dehydrogenase (IDH)-mutated diffuse gliomas grade 2-3, which have a diffuse growth pattern. With their relatively good prognosis, yet incurable nature, therapy needs to be delicately balanced to achieve a maximal survival benefit combined with an optimised quality of life. METHODS AND ANALYSIS: PRO-GLIO (PROton versus photon therapy in IDH-mutated diffuse grade 2 and 3 GLIOmas) is an open-label, multicentre, randomised phase III non-inferiority study. 224 patients aged 18-65 years with IDH-mutated diffuse gliomas grade 2-3 from Norway and Sweden will be randomised 1:1 to radiotherapy delivered with protons (experimental arm) or photons (standard arm). First intervention-free survival at 2 years is the primary endpoint. Key secondary endpoints are fatigue and cognitive impairment, both at 2 years. Additional secondary outcomes include several survival measures, health-related quality of life parameters and health economy endpoints. ETHICS AND DISSEMINATION: To implement proton therapy as part of standard of care for patients with IDH-mutated diffuse gliomas grade 2-3, it should be deemed safe. With its randomised controlled design testing proton versus photon therapy, PRO-GLIO will provide important information for this patient population concerning safety, cognition, fatigue and other quality of life parameters. As proton therapy is considerably more costly than its photon counterpart, cost-effectiveness will also be evaluated. PRO-GLIO is approved by ethical committees in Norway (Regional Committee for Medical & Health Research Ethics) and Sweden (The Swedish Ethical Review Authority) and patient inclusion has commenced. Trial results will be published in international peer-reviewed journals, relevant conferences, national and international meetings and expert forums. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Registry (NCT05190172).


Assuntos
Glioma , Prótons , Humanos , Cognição , Glioma/genética , Glioma/radioterapia , Noruega , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Suécia
7.
Transl Oncol ; 26: 101535, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36115076

RESUMO

Serum-free culturing of patient-derived glioblastoma biopsies enrich for glioblastoma stem cells (GSCs) and is recognized as a disease-relevant model system in glioblastoma (GBM). We hypothesized that the temozolomide (TMZ) drug sensitivity of patient-derived GSC cultures correlates to clinical sensitivity patterns and has clinical predictive value in a cohort of GBM patients. To this aim, we established 51 individual GSC cultures from surgical biopsies from both treatment-naïve primary and pretreated recurrent GBM patients. The cultures were evaluated for sensitivity to TMZ over a dosing range achievable in normal clinical practice. Drug efficacy was quantified by the drug sensitivity score. MGMT-methylation status was investigated by pyrosequencing. Correlative, contingency, and survival analyses were performed for associations between experimental and clinical data. We found a heterogeneous response to temozolomide in the GSC culture cohort. There were significant differences in the sensitivity to TMZ between the newly diagnosed and the TMZ-treated recurrent disease (p <0.01). There was a moderate correlation between MGMT-status and sensitivity to TMZ (r=0.459, p=0.0009). The relationship between MGMT status and TMZ efficacy was statistically significant on multivariate analyses (p=0.0051). We found a predictive value of TMZ sensitivity in individual GSC cultures to patient survival (p=0.0089). We conclude that GSC-enriched cultures hold clinical and translational relevance by their ability to reflect the clinical heterogeneity in TMZ-sensitivity, substantiate the association between TMZ-sensitivity and MGMT-promotor methylation status and appear to have a stronger predictive value than MGMT-promotor methylation on clinical responses to TMZ.

8.
Eur J Radiol ; 147: 110136, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35007982

RESUMO

PURPOSE: Understanding how mechanical properties relate to functional changes in glioblastomas may help explain different treatment response between patients. The aim of this study was to map differences in biomechanical and functional properties between tumor and healthy tissue, to assess any relationship between them and to study their spatial distribution. METHODS: Ten patients with glioblastoma and 17 healthy subjects were scanned using MR Elastography, perfusion and diffusion MRI. Stiffness and viscosity measurements G' and G'', cerebral blood flow (CBF), apparent diffusion coefficient (ADC) and fractional anisotropy (FA) were measured in patients' contrast-enhancing tumor, necrosis, edema, and gray and white matter, and in gray and white matter for healthy subjects. A regression analysis was used to predict CBF as a function of ADC, FA, G' and G''. RESULTS: Median G' and G'' in contrast-enhancing tumor were 13% and 37% lower than in normal-appearing white matter (P < 0.01), and 8% and 6% lower in necrosis than in contrast-enhancing tumor, respectively (P < 0.05). Tumors showed both inter-patient and intra-patient heterogeneity. Measurements approached values in normal-appearing tissue when moving outward from the tumor core, but abnormal tissue properties were still present in regions of normal-appearing tissue. Using both a linear and a random-forest model, prediction of CBF was improved by adding MRE measurements to the model (P < 0.01). CONCLUSIONS: The inclusion of MRE measurements in statistical models helped predict perfusion, with stiffer tissue associated with lower perfusion values.


Assuntos
Neoplasias Encefálicas , Técnicas de Imagem por Elasticidade , Glioblastoma , Substância Branca , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Circulação Cerebrovascular , Imagem de Difusão por Ressonância Magnética , Glioblastoma/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
9.
Neurooncol Pract ; 8(6): 706-717, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34777840

RESUMO

BACKGROUND: Early extensive surgery is a cornerstone in treatment of diffuse low-grade gliomas (DLGGs), and an additional survival benefit has been demonstrated from early radiochemotherapy in selected "high-risk" patients. Still, there are a number of controversies related to DLGG management. The objective of this multicenter population-based cohort study was to explore potential variations in diagnostic work-up and treatment between treating centers in 2 Scandinavian countries with similar public health care systems. METHODS: Patients screened for inclusion underwent primary surgery of a histopathologically verified diffuse WHO grade II glioma in the time period 2012 through 2017. Clinical and radiological data were collected from medical records and locally conducted research projects, whereupon differences between countries and inter-hospital variations were explored. RESULTS: A total of 642 patients were included (male:female ratio 1:4), and annual age-standardized incidence rates were 0.9 and 0.8 per 100 000 in Norway and Sweden, respectively. Considerable inter-hospital variations were observed in preoperative work-up, tumor diagnostics, surgical strategies, techniques for intraoperative guidance, as well as choice and timing of adjuvant therapy. CONCLUSIONS: Despite geographical population-based case selection, similar health care organizations, and existing guidelines, there were considerable variations in DLGG management. While some can be attributed to differences in clinical implementation of current scientific knowledge, some of the observed inter-hospital variations reflect controversies related to diagnostics and treatment. Quantification of these disparities renders possible identification of treatment patterns associated with better or worse outcomes and may thus represent a step toward more uniform evidence-based care.

10.
Neurooncol Adv ; 3(1): vdab149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34729487

RESUMO

BACKGROUND: Brain tumor surgery must balance the benefit of maximal resection against the risk of inflicting severe damage. The impact of increased resection is diagnosis-specific. However, the precise diagnosis is typically uncertain at surgery due to limitations of imaging and intraoperative histomorphological methods. Novel and accurate strategies for brain tumor classification are necessary to support personalized intraoperative neurosurgical treatment decisions. Here, we describe a fast and cost-efficient workflow for intraoperative classification of brain tumors based on DNA methylation profiles generated by low coverage nanopore sequencing and machine learning algorithms. METHODS: We evaluated 6 independent cohorts containing 105 patients, including 50 pediatric and 55 adult patients. Ultra-low coverage whole-genome sequencing was performed on nanopore flow cells. Data were analyzed using copy number variation and ad hoc random forest classifier for the genome-wide methylation-based classification of the tumor. RESULTS: Concordant classification was obtained between nanopore DNA methylation analysis and a full neuropathological evaluation in 93 of 105 (89%) cases. The analysis demonstrated correct diagnosis in 6/6 cases where frozen section evaluation was inconclusive. Results could be returned to the operating room at a median of 97 min (range 91-161 min). Precise classification of the tumor entity and subtype would have supported modification of the surgical strategy in 12 out of 20 patients evaluated intraoperatively. CONCLUSION: Intraoperative nanopore sequencing combined with machine learning diagnostics was robust, sensitive, and rapid. This strategy allowed DNA methylation-based classification of the tumor to be returned to the surgeon within a timeframe that supports intraoperative decision making.

11.
Neurooncol Adv ; 3(1): vdab008, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33665615

RESUMO

BACKGROUND: The survival rates in population-based series of glioblastoma (GBM) differ substantially from those reported in clinical trials. This discrepancy may be attributed to that patients recruited to trials tend to be younger with better performance status. However, the proportion and characteristics of the patients in a population considered either eligible or ineligible for trials is unknown. The generalizability of trial results is therefore also uncertain. METHODS: Using the Cancer Registry of Norway and the Brain Tumor Database at Oslo University Hospital, we tracked all patients within a well-defined geographical area with newly diagnosed GBM during the years 2012-2017. Based on data from these registries and the medical records, the patients were evaluated for trial eligibility according to criteria employed in recent phase III trials for GBM. RESULTS: We identified 512 patients. The median survival was 11.7 months. When we selected a potential trial population at the start of concurrent chemoradiotherapy (radiotherapy [RT]/ temozolomide [TMZ]) by the parameters age (18-70 y), passed surgery for a supratentorial GBM, Eastern Cooperative Oncology Group (ECOG) ≤2, normal hematologic, hepatic and renal function, and lack of severe comorbidity, 57% of the patients were excluded. Further filtering the patients who progressed during RT/TMZ and never completed RT/TMZ resulted in exclusion of 59% and 63% of the patients, respectively. The survival of patients potentially eligible for trials was significantly higher than of the patients not fulfilling trial eligibility criteria (P < .0001). CONCLUSIONS: Patients considered eligible for phase III clinical trials represent a highly selected minority of patients in a real-world GBM population.

12.
J Magn Reson Imaging ; 53(5): 1510-1521, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33403750

RESUMO

BACKGROUND: Changes in brain stiffness can be an important biomarker for neurological disease. Magnetic resonance elastography (MRE) quantifies tissue stiffness, but the results vary between acquisition and reconstruction methods. PURPOSE: To measure MRE repeatability and estimate the effect of different reconstruction methods and varying data quality on estimated brain stiffness. STUDY TYPE: Prospective. SUBJECTS: Fifteen healthy subjects. FIELD STRENGTH/SEQUENCE: 3T MRI, gradient-echo elastography sequence with a 50 Hz vibration frequency. ASSESSMENT: Imaging was performed twice in each subject. Images were reconstructed using a curl-based and a finite-element-model (FEM)-based method. Stiffness was measured in the whole brain, in white matter, and in four cortical and four deep gray matter regions. Repeatability coefficients (RC), intraclass correlation coefficients (ICC), and coefficients of variation (CV) were calculated. MRE data quality was quantified by the ratio between shear waves and compressional waves. STATISTICAL TESTS: Median values with range are presented. Reconstruction methods were compared using paired Wilcoxon signed-rank tests, and Spearman's rank correlation was calculated between MRE data quality and stiffness. Holm-Bonferroni corrections were employed to adjust for multiple comparisons. RESULTS: In the whole brain, CV was 4.3% and 3.8% for the curl and the FEM reconstruction, respectively, with 4.0-12.8% for subregions. Whole-brain ICC was 0.60-0.74, ranging from 0.20 to 0.89 in different regions. RC for the whole brain was 0.14 kPa and 0.17 kPa for the curl and FEM methods, respectively. FEM reconstruction resulted in 39% higher stiffness than the curl reconstruction (P < 0.05). MRE data quality, defined as shear-compression wave ratio, was higher in peripheral regions than in central regions of the brain (P < 0.05). No significant correlations were observed between MRE data quality and stiffness estimates. DATA CONCLUSION: MRE of the human brain is a robust technique in terms of repeatability. Caution is warranted when comparing stiffness values obtained with different techniques. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.


Assuntos
Técnicas de Imagem por Elasticidade , Encéfalo/diagnóstico por imagem , Imagem Ecoplanar , Humanos , Imageamento por Ressonância Magnética , Estudos Prospectivos , Reprodutibilidade dos Testes
13.
BMC Cancer ; 19(1): 628, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31238897

RESUMO

BACKGROUND: A major barrier to effective treatment of glioblastoma (GBM) is the large intertumoral heterogeneity at the genetic and cellular level. In early phase clinical trials, patient heterogeneity in response to therapy is commonly observed; however, how tumor heterogeneity is reflected in individual drug sensitivities in the treatment-naïve glioblastoma stem cells (GSC) is unclear. METHODS: We cultured 12 patient-derived primary GBMs as tumorspheres and validated tumor stem cell properties by functional assays. Using automated high-throughput screening (HTS), we evaluated sensitivity to 461 anticancer drugs in a collection covering most FDA-approved anticancer drugs and investigational compounds with a broad range of molecular targets. Statistical analyses were performed using one-way ANOVA and Spearman correlation. RESULTS: Although tumor stem cell properties were confirmed in GSC cultures, their in vitro and in vivo morphology and behavior displayed considerable tumor-to-tumor variability. Drug screening revealed significant differences in the sensitivity to anticancer drugs (p < 0.0001). The patient-specific vulnerabilities to anticancer drugs displayed a heterogeneous pattern. They represented a variety of mechanistic drug classes, including apoptotic modulators, conventional chemotherapies, and inhibitors of histone deacetylases, heat shock proteins, proteasomes and different kinases. However, the individual GSC cultures displayed high biological consistency in drug sensitivity patterns within a class of drugs. An independent laboratory confirmed individual drug responses. CONCLUSIONS: This study demonstrates that patient-derived and treatment-naïve GSC cultures maintain patient-specific traits and display intertumoral heterogeneity in drug sensitivity to anticancer drugs. The heterogeneity in patient-specific drug responses highlights the difficulty in applying targeted treatment strategies at the population level to GBM patients. However, HTS can be applied to uncover patient-specific drug sensitivities for functional precision medicine.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Células-Tronco Neoplásicas/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Células Tumorais Cultivadas/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos SCID , Transplante de Neoplasias , Células-Tronco Neoplásicas/patologia , Esferoides Celulares/patologia , Células Tumorais Cultivadas/patologia
14.
J Proteome Res ; 18(5): 2012-2020, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30964684

RESUMO

Glioblastoma is the most common and malignant brain tumor, and current therapies confer only modest survival benefits. A major obstacle is our ability to monitor treatment effect on tumors. Current imaging modalities are ambiguous, and repeated biopsies are not encouraged. To scout for markers of treatment response, we used NMR spectroscopy to study the effects of a survivin inhibitor on the metabolome of primary glioblastoma cancer stem cells. Applying high resolution NMR spectroscopy (1H resonance frequency: 800.03 MHz) to just 3 million cells per sample, we achieved sensitive and high resolving determinations of, e.g., amino acids, nucleosides, and constituents of the citric acid cycle. For control samples that were cultured, prepared, and measured at varying dates, peak area relative standard deviations were 15-20%. Analyses of unfractionated lysates were performed for straightforward compound identification with COLMAR and HMDB databases. Principal component analysis revealed that citrate levels were clearly upregulated in nonresponsive cells, while lactate levels substantially decreased following treatment for both responsive and nonresponsive cells. Hence, lactate and citrate may be potential markers of successful drug uptake and poor response to survivin inhibitors, respectively. Our metabolomics approach provided alternative biomarker candidates compared to spectrometry-based proteomics, underlining benefits of complementary methodologies. These initial findings make a foundation for exploring in vivo MR spectroscopy (MRS) of brain tumors, as citrate and lactate are MRS-visible. In sum, NMR metabolomics is a tool for addressing glioblastoma.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Ácido Cítrico/metabolismo , Glioblastoma/tratamento farmacológico , Imidazóis/uso terapêutico , Ácido Láctico/metabolismo , Metaboloma , Naftoquinonas/uso terapêutico , Biomarcadores Farmacológicos/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Sobrevivência Celular/efeitos dos fármacos , Ciclo do Ácido Cítrico/efeitos dos fármacos , Ciclo do Ácido Cítrico/genética , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Espectroscopia de Ressonância Magnética , Terapia de Alvo Molecular/métodos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Cultura Primária de Células , Análise de Componente Principal , Survivina/antagonistas & inibidores , Survivina/genética , Survivina/metabolismo
15.
J Cancer Res Clin Oncol ; 145(6): 1495-1507, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31028540

RESUMO

PURPOSE: Constructed from a theoretical framework, the coordinated undermining of survival paths in glioblastoma (GBM) is a combination of nine drugs approved for non-oncological indications (CUSP9; aprepitant, auranofin, captopril, celecoxib, disulfiram, itraconazole, minocycline, quetiapine, and sertraline) combined with temozolomide (TMZ). The availability of these drugs outside of specialized treatment centers has led patients to embark on combination treatments without systematic follow-up. However, no experimental data on efficacy using the CUSP9 strategy in GBM have been reported. METHODS: Using patient-derived glioblastoma stem cell (GSC) cultures from 15 GBM patients, we described stem cell properties of individual cultures, determined the dose-response relationships of the drugs in the CUSP9, and assessed the efficacy the CUSP9 combination with TMZ in concentrations clinically achievable. The efficacy was evaluated by cell viability, cytotoxicity, and sphere-forming assays in both primary and recurrent GSC cultures. RESULTS: We found that CUSP9 with TMZ induced a combination effect compared to the drugs individually (p < 0.0001). Evaluated by cell viability and cytotoxicity, 50% of the GSC cultures displayed a high sensitivity to the drug combination. In clinical plasma concentrations, the effect of the CUSP9 with TMZ was superior to TMZ monotherapy (p < 0.001). The Wnt-signaling pathway has been shown important in GSC, and CUSP9 significantly reduces Wnt-activity. CONCLUSIONS: Adding experimental data to the theoretical rationale of CUSP9, our results demonstrate that the CUSP9 treatment strategy can induce a combination effect in both treatment-naïve and pretreated GSC cultures; however, predicting response in individual cultures will require further profiling of GSCs.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Animais , Aprepitanto/administração & dosagem , Aprepitanto/farmacologia , Auranofina/administração & dosagem , Auranofina/farmacologia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Captopril/administração & dosagem , Captopril/farmacologia , Celecoxib/administração & dosagem , Celecoxib/farmacologia , Dissulfiram/administração & dosagem , Dissulfiram/farmacologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Itraconazol/administração & dosagem , Itraconazol/farmacologia , Camundongos , Camundongos SCID , Minociclina/administração & dosagem , Minociclina/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fumarato de Quetiapina/administração & dosagem , Fumarato de Quetiapina/farmacologia , Reprodutibilidade dos Testes , Sertralina/administração & dosagem , Sertralina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Temozolomida/administração & dosagem , Temozolomida/farmacologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Transl Oncol ; 12(1): 122-133, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30292065

RESUMO

BACKGROUND: Tumor cell invasion is a hallmark of glioblastoma (GBM) and a major contributing factor for treatment failure, tumor recurrence, and the poor prognosis of GBM. Despite this, our understanding of the molecular machinery that drives invasion is limited. METHODS: Time-lapse imaging of patient-derived GBM cell invasion in a 3D collagen gel matrix, analysis of both the cellular invasive phenotype and single cell invasion pattern with microarray expression profiling. RESULTS: GBM invasion was maintained in a simplified 3D-milieue. Invasion was promoted by the presence of the tumorsphere graft. In the absence of this, the directed migration of cells subsided. The strength of the pro-invasive repulsive signaling was specific for a given patient-derived culture. In the highly invasive GBM cultures, the majority of cells had a neural progenitor-like phenotype, while the less invasive cultures had a higher diversity in cellular phenotypes. Microarray expression analysis of the non-invasive cells from the tumor core displayed a higher GFAP expression and a signature of genes containing VEGFA, hypoxia and chemo-repulsive signals. Cells of the invasive front expressed higher levels of CTGF, TNFRSF12A and genes involved in cell survival, migration and cell cycle pathways. A mesenchymal gene signature was associated with increased invasion. CONCLUSION: The GBM tumorsphere core promoted invasion, and the invasive front was dominated by a phenotypically defined cell population expressing genes regulating traits found in aggressive cancers. The detected cellular heterogeneity and transcriptional differences between the highly invasive and core cells identifies potential targets for manipulation of GBM invasion.

17.
Clin Transl Med ; 8(1): 33, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31889236

RESUMO

BACKGROUND: Despite the well described heterogeneity in glioblastoma (GBM), treatment is standardized, and clinical trials investigate treatment effects at population level. Genomics-driven oncology for stratified treatments allow clinical decision making in only a small minority of screened patients. Addressing tumor heterogeneity, we aimed to establish a clinical translational protocol in recurrent GBM (recGBM) utilizing autologous glioblastoma stem cell (GSC) cultures and automated high-throughput drug sensitivity and resistance testing (DSRT) for individualized treatment within the time available for clinical application. RESULTS: From ten patients undergoing surgery for recGBM, we established individual cell cultures and characterized the GSCs by functional assays. 7/10 GSC cultures could be serially expanded. The individual GSCs displayed intertumoral differences in their proliferative capacity, expression of stem cell markers and variation in their in vitro and in vivo morphology. We defined a time frame of 10 weeks from surgery to complete the entire pre-clinical work-up; establish individualized GSC cultures, evaluate drug sensitivity patterns of 525 anticancer drugs, and identify options for individualized treatment. Within the time frame for clinical translation 5/7 cultures reached sufficient cell yield for complete drug screening. The DSRT revealed significant intertumoral heterogeneity to anticancer drugs (p < 0.0001). Using curated reference databases of drug sensitivity in GBM and healthy bone marrow cells, we identified individualized treatment options in all patients. Individualized treatment options could be selected from FDA-approved drugs from a variety of different drug classes in all cases. CONCLUSIONS: In recGBM, GSC cultures could successfully be established in the majority of patients. The individual cultures displayed intertumoral heterogeneity in their in vitro and in vivo behavior. Within a time frame for clinical application, we could perform DSRT in 50% of recGBM patients. The DSRT revealed a remarkable intertumoral heterogeneity in sensitivity to anticancer drugs in recGBM that could allow tailored therapeutic options for functional precision medicine.

18.
Neoplasia ; 20(7): 643-656, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29793116

RESUMO

BACKGROUND: Widespread infiltration of tumor cells into surrounding brain parenchyma is a hallmark of malignant gliomas, but little data exist on the overall invasion pattern of tumor cells throughout the brain. METHODS: We have studied the invasive phenotype of malignant gliomas in two invasive mouse models and patients. Tumor invasion patterns were characterized in a patient-derived xenograft mouse model using brain-wide histological analysis and magnetic resonance (MR) imaging. Findings were histologically validated in a cdkn2a-/- PDGF-ß lentivirus-induced mouse glioblastoma model. Clinical verification of the results was obtained by analysis of MR images of malignant gliomas. RESULTS: Histological analysis using human-specific cellular markers revealed invasive tumors with a non-radial invasion pattern. Tumors cells accumulated in structures located far from the transplant site, such as the optic white matter and pons, whereas certain adjacent regions were spared. As such, the hippocampus was remarkably free of infiltrating tumor cells despite the extensive invasion of surrounding regions. Similarly, MR images of xenografted mouse brains displayed tumors with bihemispheric pathology, while the hippocampi appeared relatively normal. In patients, most malignant temporal lobe gliomas were located lateral to the collateral sulcus. Despite widespread pathological fluid-attenuated inversion recovery signal in the temporal lobe, 74% of the "lateral tumors" did not show signs of involvement of the amygdalo-hippocampal complex. CONCLUSIONS: Our data provide clear evidence for a compartmental pattern of invasive growth in malignant gliomas. The observed invasion patterns suggest the presence of preferred migratory paths, as well as intra-parenchymal boundaries that may be difficult for glioma cells to traverse supporting the notion of compartmental growth. In both mice and human patients, the hippocampus appears to be a brain region that is less prone to tumor invasion.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Hipocampo/patologia , Animais , Animais Geneticamente Modificados , Neoplasias Encefálicas/diagnóstico por imagem , Modelos Animais de Doenças , Glioma/diagnóstico por imagem , Xenoenxertos , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Camundongos , Microscopia de Fluorescência , Invasividade Neoplásica
19.
Exp Cell Res ; 349(2): 199-213, 2016 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-27515001

RESUMO

The biology of glioblastoma invasion and its mechanisms are poorly understood. We demonstrate using time-lapse microscopy that grafting of glioblastoma (GBM) tumorspheres into rodent brain slices results in experimental ex vivo tumors with invasive properties that recapitulate the invasion observed after orthotopic transplantation into the rodent brain. The migratory movements and mitotic patterns were clearly modified by signals extrinsic to the invading cells. The cells migrated away from the tumorspheres, and removal of the spheres reduced the directed invasive movement. The cell cultures contained different populations of invasive cells that had distinct morphology and invasive behavior patterns. Grafts of the most invasive GBM culture contained 91±8% cells with an invasive phenotype, characterized by small soma with a distinct leading process. Conversely, the majority of cells in less invasive GBM grafts were phenotypically heterogeneous: only 6.3±4.1% of the cells had the invasive phenotype. Grafts of highly and moderately invasive cultures had different proportions of cells that advanced into the brain slice parenchyma during the observation period: 89.2±2.2% and 23.1±6.8%, respectively. In grafts with moderately invasive properties, most of the cells (76.8±6.8%) invading the surrounding brain tissue returned to the tumor bulk or stopped centrifugal migration. Our data suggest that the invasion of individual GBM tumors can be conditioned by the prevalence of a cell fraction with particular invasive morphology and by signaling between the tumor core and invasive cells. These findings can be important for the development of new therapeutic strategies that target the invasive GBM cells.


Assuntos
Neoplasias Encefálicas/patologia , Movimento Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Glioma/patologia , Invasividade Neoplásica/patologia , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Humanos , Invasividade Neoplásica/genética , Fenótipo , Transdução de Sinais/genética , Fatores de Tempo
20.
Neurochem Res ; 41(7): 1545-58, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26915110

RESUMO

Glioblastoma is the most common and malignant brain cancer. In spite of surgical removal, radiation and chemotherapy, this cancer recurs within short time and median survival after diagnosis is less than a year. Glioblastoma stem cells (GSCs) left in the brain after surgery is thought to explain the inevitable recurrence of the tumor. Although hypoxia is a prime factor contributing to treatment resistance in many cancers, its effect on GSC has been little studied. Especially how differentiation influences the tolerance to acute hypoxia in GSCs is not well explored. We cultured GSCs from three patient biopsies and exposed these and their differentiated (1- and 4-weeks) progeny to acute hypoxia while monitoring intracellular calcium and mitochondrial membrane potential (ΔΨm). Undifferentiated GSCs were not hypoxia tolerant, showing both calcium overload and mitochondrial depolarization. One week differentiated cells were the most tolerant to hypoxia, preserving intracellular calcium stability and ΔΨm during 15 min of acute hypoxia. After 4 weeks of differentiation, mitochondrial mass was significantly reduced. In these cells calcium homeostasis was maintained during hypoxia, although the mitochondria were depolarized, suggesting a reduced mitochondrial dependency. Basal metabolic rate increased by differentiation, however, low oxygen consumption and high ΔΨm in undifferentiated GSCs did not provide hypoxia tolerance. The results suggest that undifferentiated GSCs are oxygen dependent, and that limited differentiation induces relative hypoxia tolerance. Hypoxia tolerance may be a factor involved in high-grade malignancy. This warrants a careful approach to differentiation as a glioblastoma treatment strategy.


Assuntos
Neoplasias Encefálicas/metabolismo , Diferenciação Celular/fisiologia , Glioblastoma/metabolismo , Células-Tronco Neoplásicas/metabolismo , Neoplasias Encefálicas/patologia , Hipóxia Celular/fisiologia , Glioblastoma/patologia , Humanos , Células-Tronco Neoplásicas/patologia , Fatores de Tempo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA