Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1003557, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033658

RESUMO

The dorsolateral prefrontal cortex (DLPFC) has a crucial role in cognitive functioning and negative symptoms in schizophrenia. However, limited information of altered protein networks is available in this region in schizophrenia. We performed a proteomic analysis using single-shot liquid chromatography-tandem mass spectrometry of grey matter of postmortem DLPFC in chronic schizophrenia subjects (n = 20) and unaffected subjects (n = 20) followed by bioinformatic analysis to identify altered protein networks in schizophrenia (PXD024939 identifier in ProteomeXchange repository). Our results displayed a proteome profile in the DLPFC of 1989 proteins. 43 proteins were found significantly altered in schizophrenia. Analysis of this panel showed an enrichment of biological processes implicated in vesicle-mediated transport, processing and antigen presentation via MHC class II, intracellular transport and selenium metabolism. The enriched identified pathways were MHC class II antigen presentation, vesicle-mediated transport, Golgi ER retrograde transport, Nef mediated CD8 downregulation and the immune system. All these enriched categories were found to be downregulated. Furthermore, our network analyses showed crosstalk between proteins involved in MHC class II antigen presentation, membrane trafficking, Golgi-to-ER retrograde transport, Nef-mediated CD8 downregulation and the immune system with only one module built by 13 proteins. RAB7A showed eight interactions with proteins of all these pathways. Our results provide an altered molecular network involved in immune response in the DLPFC in schizophrenia with a central role of RAB7A. These results suggest that RAB7A or other proteins of this network could be potential targets for novel pharmacological strategies in schizophrenia for improving cognitive and negative symptoms.

2.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37046989

RESUMO

Cognitive impairment represents one of the core features of schizophrenia. Prolyl Oligopeptidase (POP) inhibition is an emerging strategy for compensating cognitive deficits in hypoglutamatergic states such as schizophrenia, although little is known about how POP inhibitors exert their pharmacological activity. The mitochondrial and nuclear protein Prohibitin 2 (PHB2) could be dysregulated in schizophrenia. However, altered PHB2 levels in schizophrenia linked to N-methyl-D-aspartate receptor (NMDAR) activity and cognitive deficits are still unknown. To shed light on this, we measured the PHB2 levels by immunoblot in a postmortem dorsolateral prefrontal cortex (DLPFC) of schizophrenia subjects, in the frontal pole of mice treated with the NMDAR antagonists phencyclidine and dizocilpine, and in rat cortical astrocytes and neurons treated with dizocilpine. Mice and cells were treated in combination with the POP inhibitor IPR19. The PHB2 levels were also analyzed by immunocytochemistry in rat neurons. The PHB2 levels increased in DLPFC in cases of chronic schizophrenia and were associated with cognitive impairments. NMDAR antagonists increased PHB2 levels in the frontal pole of mice and in rat astrocytes and neurons. High levels of PHB2 were found in the nucleus and cytoplasm of neurons upon NMDAR inhibition. IPR19 restored PHB2 levels in the acute NMDAR inhibition. These results show that IPR19 restores the upregulation of PHB2 in an acute NMDAR hypoactivity stage suggesting that the modulation of PHB2 could compensate NMDAR-dependent cognitive impairments in schizophrenia.


Assuntos
Disfunção Cognitiva , Transtornos Psicóticos , Esquizofrenia , Animais , Ratos , Cognição , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Maleato de Dizocilpina/farmacologia , Proibitinas , Prolil Oligopeptidases/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo
3.
J Neuroinflammation ; 18(1): 198, 2021 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-34511126

RESUMO

BACKGROUND: The cortico-cerebellar-thalamic-cortical circuit has been implicated in the emergence of psychotic symptoms in schizophrenia (SZ). The kynurenine pathway (KP) has been linked to alterations in glutamatergic and monoaminergic neurotransmission and to SZ symptomatology through the production of the metabolites quinolinic acid (QA) and kynurenic acid (KYNA). METHODS: This work describes alterations in KP in the post-mortem prefrontal cortex (PFC) and cerebellum (CB) of 15 chronic SZ patients and 14 control subjects in PFC and 13 control subjects in CB using immunoblot for protein levels and ELISA for interleukins and QA and KYNA determinations. Monoamine metabolites were analysed by high-performance liquid chromatography and SZ symptomatology was assessed by Positive and Negative Syndrome Scale (PANSS). The association of KP with inflammatory mediators, monoamine metabolism and SZ symptomatology was explored. RESULTS: In the PFC, the presence of the anti-inflammatory cytokine IL-10 together with IDO2 and KATII enzymes decreased in SZ, while TDO and KMO enzyme expression increased. A network interaction analysis showed that in the PFC IL-10 was coupled to the QA branch of the kynurenine pathway (TDO-KMO-QA), whereas IL-10 associated with KMO in CB. KYNA in the CB inversely correlated with negative and general PANSS psychopathology. Although there were no changes in monoamine metabolite content in the PFC in SZ, a network interaction analysis showed associations between dopamine and methoxyhydroxyphenylglycol degradation metabolite. Direct correlations were found between general PANSS psychopathology and the serotonin degradation metabolite, 5-hydroxyindoleacetic acid. Interestingly, KYNA in the CB inversely correlated with 5-hydroxyindoleacetic acid in the PFC. CONCLUSIONS: Thus, this work found alterations in KP in two brain areas belonging to the cortico-cerebellar-thalamic-cortical circuit associated with SZ symptomatology, with a possible impact across areas in 5-HT degradation.


Assuntos
Cinurenina , Esquizofrenia , Cerebelo/metabolismo , Humanos , Ácido Cinurênico/metabolismo , Cinurenina/metabolismo , Córtex Pré-Frontal/metabolismo , Esquizofrenia/metabolismo
4.
Eur Neuropsychopharmacol ; 29(3): 384-396, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30630651

RESUMO

Cognitive deterioration and symptom progression occur in schizophrenia over the course of the disorder. A dysfunction of the immune system/neuroinflammatory pathways has been linked to schizophrenia (SZ). These altered processes in the dorsolateral prefrontal cortex (DLPFC) could contribute to the worsening of the deficits. However, limited studies are available in this brain region in elderly population with long-term treatments. In this study, we explore the possible deregulation of 21 key genes involved in immune homeostasis, including pro- and anti-inflammatory cytokines, cytokine modulators (toll-like receptors, colony-stimulating factors, and members of the complement system) and microglial and astroglial markers in the DLPFC in elderly chronic schizophrenia. We used quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR) on extracts from postmortem DLPFC of elderly subjects with chronic SZ (n = 14) compared to healthy control individuals (n = 14). We report that CSF1R, TLR4, IL6, TNFα, TNFRSF1A, IL10, IL10RA, IL10RB, and CD68 were down-regulated in elderly SZ subjects. Moreover, we found that the expression levels of all the altered inflammatory genes in SZ correlated with the microglial marker CD68. However, no associations were found with the astroglial marker GFAP. This study reveals a decrease in the gene expression of cytokines and immune response/inflammation mediators in the DLPFC of elderly subjects with chronic schizophrenia, supporting the idea of a dysfunction of these processes in aged patients and its possible relationship with active microglia abundance. These findings include elements that might contribute to the cognitive decline and symptom progression linked to DLPFC functioning at advanced stages of the disease.


Assuntos
Citocinas/metabolismo , Regulação para Baixo/fisiologia , Encefalite/complicações , Córtex Pré-Frontal/metabolismo , Esquizofrenia/complicações , Esquizofrenia/patologia , Idoso , Idoso de 80 Anos ou mais , Fatores Estimuladores de Colônias/genética , Fatores Estimuladores de Colônias/metabolismo , Citocinas/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/metabolismo , Estatísticas não Paramétricas , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
5.
Eur Arch Psychiatry Clin Neurosci ; 269(8): 941-948, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30167782

RESUMO

Accumulating evidence suggests that Specificity Protein 1 (SP1) and 4 (SP4) transcription factors are involved in the pathophysiology of schizophrenia. The therapeutic use of selective oestrogen modulators such as raloxifene added to antipsychotic drugs in the treatment of postmenopausal women with schizophrenia has been investigated in a few clinical trials, which reported an improvement in negative, positive, and general psychopathological symptoms. We aimed to investigate the possible association between peripheral SP protein levels and symptom improvement in postmenopausal women with schizophrenia treated with adjuvant raloxifene. In a subgroup of 14 postmenopausal women with schizophrenia from a 24-week, randomized, parallel, double-blind, placebo-controlled clinical trial (NCT015736370), we investigated changes in SP1 and SP4 protein levels in peripheral blood mononuclear cells. Participants were randomized to either 60 mg/day adjunctive raloxifene or placebo. Psychopathological symptoms were assessed at baseline and at week 24 with the Positive and Negative Syndrome Scale (PANSS). The expression of SP proteins was evaluated by immunoblot, and changes in PANSS scores and protein levels were compared at baseline and after 24 weeks of treatment. An improvement in symptoms was observed in the intervention group, but not in placebo group. Post-treatment protein levels of SP4, but not SP1, correlated with improvements in general and total PANSS subscales in the raloxifene intervention group. A reduction in SP4 levels was found after raloxifene treatment. These results suggest that SP4 may be involved in raloxifene symptom improvement in postmenopausal women and could be a potential candidate for future studies investigating blood-based biomarkers for raloxifene effectiveness.


Assuntos
Antipsicóticos/uso terapêutico , Antagonistas de Estrogênios/uso terapêutico , Leucócitos Mononucleares/metabolismo , Pós-Menopausa/sangue , Cloridrato de Raloxifeno/uso terapêutico , Esquizofrenia/tratamento farmacológico , Fator de Transcrição Sp1/sangue , Fator de Transcrição Sp4/sangue , Antipsicóticos/administração & dosagem , Método Duplo-Cego , Quimioterapia Combinada , Antagonistas de Estrogênios/administração & dosagem , Feminino , Humanos , Pessoa de Meia-Idade , Escalas de Graduação Psiquiátrica , Cloridrato de Raloxifeno/administração & dosagem
6.
Schizophr Res ; 177(1-3): 37-43, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27156240

RESUMO

Reduced glutamatergic activity and energy metabolism in the dorsolateral prefrontal cortex (DLPFC) have been described in schizophrenia. Glycogenolysis in astrocytes is responsible for providing neurons with lactate as a transient energy supply helping to couple glutamatergic neurotransmission and glucose utilization in the brain. This mechanism could be disrupted in schizophrenia. The aim of this study was to explore whether the protein levels of the astrocyte isoform of glycogen phosphorylase (PYGM), key enzyme of glycogenolysis, and the isoform A of Ras-related C3 botulinum toxin substrate 1 (RAC1), a kinase that regulates PYGM activity, are altered in the postmortem DLPFC of chronic schizophrenia patients (n=23) and matched controls (n=23). We also aimed to test NMDAR blockade effect on these proteins in the mouse cortex and cortical astrocytes and antipsychotic treatments in rats. Here we report a reduction in PYGM and RAC1 protein levels in the DLPFC in schizophrenia. We found that treatment with the NMDAR antagonist dizocilpine in mice as a model of psychosis increased PYGM and reduced RAC1 protein levels. The same result was observed in rat cortical astroglial-enriched cultures. 21-day haloperidol treatment increased PYGM levels in rats. These results show that PYGM and RAC1 are altered in the DLPFC in chronic schizophrenia and are controlled by NMDA signalling in the rodent cortex and cortical astrocytes suggesting an altered NMDA-dependent glycogenolysis in astrocytes in schizophrenia. Together, this study provides evidence of a NMDA-dependent transient local energy deficit in neuron-glia crosstalk in schizophrenia, contributing to energy deficits of the disorder.


Assuntos
Astrócitos/enzimologia , Glicogênio Fosforilase/metabolismo , Córtex Pré-Frontal/enzimologia , Esquizofrenia/enzimologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Idoso , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Astrócitos/efeitos dos fármacos , Células Cultivadas , Doença Crônica , Estudos de Coortes , Maleato de Dizocilpina/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Haloperidol/farmacologia , Humanos , Isoenzimas , Masculino , Camundongos Endogâmicos C57BL , Córtex Pré-Frontal/efeitos dos fármacos , Distribuição Aleatória , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA