Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Ano de publicação
Intervalo de ano de publicação
1.
Dent Mater ; 39(9): 770-778, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37423880

RESUMO

OBJECTIVE: Evaluate light transmittance (%T), color change (ΔE), degree of conversion (DC), bottom-to-top Knoop microhardness (KHN), flexural strength (BFS) and modulus (FM), water sorption/solubility (WS/SL) and calcium release of resin composites containing different dicalcium phosphate dihydrate (DCPD)-to-barium glass ratios (DCPD:BG) and DCPD particle sizes. METHODS: Ten resin-based composites (50 vol% inorganic fraction) were prepared using BG (0.4 µm) and DCPD particles (12 µm, 3 µm or mixture) with DCPD:BG of 1:3, 1:1 or 3:1. A composite without DCPD was used as a control. DC, KHN, %T and ΔE were determined in 2-mm thick specimens. BFS and FM were determined after 24 h. WS/SL was determined after 7 d. Calcium release was determined by coupled plasma optical emission spectroscopy. Data were analyzed by ANOVA/Tukey test (alpha: 0.05). RESULTS: %T was significantly reduced in composites with milled, compared to pristine DCPD (p < 0.001). ΔE > 3.3 were observed with DCPD:BG of 1:1 and 3:1 formulated with milled DCPD (p < 0.001). DC increased at 1:1 and 3:1 DCPD:BG (p < 0.001). All composites presented bottom-to-top KHN of at least 0.8. BFS was not affected by DCPD size but was strongly dependent on DCPD:BG (p < 0.001). Reductions in FM were observed with milled DCPD (p < 0.001). WS/SL increased with DCPD:BG (p < 0.001). At 3DCPD: 1BG, using small DCPD particles led to a 35 % increase in calcium release (p < 0.001). SIGNIFICANCE: A trade-off between strength and Ca2+ release was observed. In spite of its low strength, the formulation containing 3 DCPD: 1 glass and milled DCPD particles is preferred due to its superior Ca2+ release.


Assuntos
Cálcio , Fosfatos , Tamanho da Partícula , Teste de Materiais , Resinas Compostas/química
2.
Braz Dent J ; 33(5): 9-17, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36287503

RESUMO

This study assessed the cell viability, cytokine production, and mineralization potential of human dental pulp cells (hDPCs) after exposure to lipopolysaccharide (LPS) and application of calcium silicate-based materials (CSBM). Characterization of the CSBM was performed by infrared spectroscopy (n = 3). Extracts of Bio-C Repair, Biodentine, Cimmo HD, and MTA Repair HP were prepared and diluted (1:1, 1:4, and 1:16). Culture of hDPCs was established and treated or not with 1 µg/mL of LPS from Escherichia coli for 7 days. MTT assay was used to assess cell viability at 24, 48, and 72 h (n = 6). Alkaline phosphatase (ALP) activity was assayed on day 7 (n = 4). Il-10 and TNF-α were quantified by ELISA at 24 h (n = 6). Data were analyzed by ANOVA and Tukey's test (α = 0.05). Cell viability of LPS-activated hPDCs was higher than untreated control in 48 and 72 h (p < 0.05). Differences between non-treated and LPS-activated hPDCs were observed for Biodentine and Cimmo HP (p < 0.05). The CSBM influenced the cell viability (p < 0.05). ALP activity was higher in LPS-activated hDPCs (p < 0.05). No changes in the concentration of TNF-α were observed between groups (p > 0.05). The CSBM increased the Il-10 production (p < 0.05). LPS-activated hDPCs presented increased cell viability and ALP activity. The CSBM showed mild toxicity and was able to enhance the cell viability and mineralization potential of untreated and LPS-activated hDPCs. The CSBM also induced anti-inflammatory mechanisms without compromising pro-inflammatory ones.


Assuntos
Interleucina-10 , Lipopolissacarídeos , Humanos , Fosfatase Alcalina , Compostos de Cálcio/farmacologia , Diferenciação Celular , Células Cultivadas , Polpa Dentária , Lipopolissacarídeos/farmacologia , Silicatos/farmacologia , Fator de Necrose Tumoral alfa
3.
Braz. dent. j ; 33(5): 9-17, Sep.-Oct. 2022. graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - odontologia (Brasil) | ID: biblio-1403791

RESUMO

Abstract This study assessed the cell viability, cytokine production, and mineralization potential of human dental pulp cells (hDPCs) after exposure to lipopolysaccharide (LPS) and application of calcium silicate-based materials (CSBM). Characterization of the CSBM was performed by infrared spectroscopy (n = 3). Extracts of Bio-C Repair, Biodentine, Cimmo HD, and MTA Repair HP were prepared and diluted (1:1, 1:4, and 1:16). Culture of hDPCs was established and treated or not with 1 µg/mL of LPS from Escherichia coli for 7 days. MTT assay was used to assess cell viability at 24, 48, and 72 h (n = 6). Alkaline phosphatase (ALP) activity was assayed on day 7 (n = 4). Il-10 and TNF-α were quantified by ELISA at 24 h (n = 6). Data were analyzed by ANOVA and Tukey's test (α = 0.05). Cell viability of LPS-activated hPDCs was higher than untreated control in 48 and 72 h (p < 0.05). Differences between non-treated and LPS-activated hPDCs were observed for Biodentine and Cimmo HP (p < 0.05). The CSBM influenced the cell viability (p < 0.05). ALP activity was higher in LPS-activated hDPCs (p < 0.05). No changes in the concentration of TNF-α were observed between groups (p > 0.05). The CSBM increased the Il-10 production (p < 0.05). LPS-activated hDPCs presented increased cell viability and ALP activity. The CSBM showed mild toxicity and was able to enhance the cell viability and mineralization potential of untreated and LPS-activated hDPCs. The CSBM also induced anti-inflammatory mechanisms without compromising pro-inflammatory ones.


Resumo Este estudo avaliou a viabilidade celular, produção de citocinas e potencial de mineralização de células da polpa dentária humana (hDPCs) após exposição a lipopolissacarídeo (LPS) e aplicação de materiais à base de silicato de cálcio (CSBM). A caracterização do CSBM foi realizada por espectroscopia (n = 3). Extratos de Bio-C Repair, Biodentine, Cimmo HD e MTA Repair HP foram preparados e diluídos (1: 1, 1: 4 e 1:16). A cultura de hDPCs foi estabelecida e tratada ou não com 1 µg / mL de LPS de Escherichia coli por 7 dias. O ensaio de MTT foi usado para avaliar a viabilidade celular em 24, 48 e 72 h (n = 6). A atividade da fosfatase alcalina (ALP) foi avaliada no dia 7 (n = 4). Il-10 e TNF-α foram quantificados por ELISA em 24 h (n = 6). Os dados foram analisados ​​por ANOVA e teste de Tukey (α = 0,05). A viabilidade celular das hPDCs ativados por LPS foi maior do que o controle não tratado em 48 e 72 h (p <0,05). Diferenças entre hPDCs não tratados e ativados por LPS foram observados para Biodentine e Cimmo HP (p < 0,05). Os CSBM influenciaram na viabilidade celular (p <0,05). A atividade de ALP foi maior em hDPCs ativadas por LPS (p <0,05). Não foram observadas alterações na concentração de TNF-α entre os grupos (p> 0,05). Os CSBM aumentaram a produção de Il-10 (p < 0,05). Os hDPCs ativados por LPS apresentaram um aumento na viabilidade celular e atividade ALP. Os CSBM apresentaram toxicidade moderada e foram capazes de aumentar a viabilidade celular e o potencial de mineralização de hDPCs não tratados e ativados por LPS. Os CSBM também induziram mecanismos anti-inflamatórios sem comprometer os pró-inflamatórios.

4.
Braz Dent J ; 33(2): 73-82, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35508039

RESUMO

This study was conducted to assess the in vitro response of human periodontal ligament stem cells (hPDLSCs) to bacterial lipopolysaccharide (LPS) activation and application of three calcium silicate-based materials (CSBM): Bio-C Sealer, MTA Fillapex and Cimmo HP. Characterization of the CSBM was performed by FTIR (n = 3). Extracts of Bio-C Sealer, MTA Fillapex and Cimmo HP were prepared and diluted (1:1, 1:4 and 1:16). Culture of hPDLSCs was established and treated or not with LPS from Escherichia coli (1 µg/mL) for 7 days. MTT assay was used to assess cell viability at 24, 48 and 72 h (n = 9). Alkaline phosphatase (ALP) activity was indirectly assayed at day 7 (n = 5). TNF-α and Il -1 0 cytokines were quantified by ELISA at 24h-cell supernatants (n = 6). Data were analyzed by ANOVA and Tukey's test (α = 0.05). The cell viability of the LPS-activated hPDLSCs were higher than untreated control (p < 0.05). The application of CSBM affected the cell viability of untreated and LPS-activated cells (p < 0.05). ALP activity was higher for Bio-C Sealer and Cimmo HP in untreated and LPS-activated cells, respectively (p < 0.05). Application of CSBM normalized the TNF-α secretion in the LPS-activated cells (p < 0.05). Only MTA Fillapex in untreated hPDLSCs presented higher values of Il -1 0 (p < 0.05). Taken collectively, the results suggests that the simulation of the inflammatory process by LPS affect the in vitro response the hPDLSCs to the application of the CSBM.


Assuntos
Ligamento Periodontal , Materiais Restauradores do Canal Radicular , Humanos , Compostos de Cálcio/farmacologia , Células Cultivadas , Lipopolissacarídeos/farmacologia , Silicatos/farmacologia , Células-Tronco , Fator de Necrose Tumoral alfa
5.
Braz. dent. j ; 33(2): 73-82, Mar.-Apr. 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - odontologia (Brasil) | ID: biblio-1374622

RESUMO

Abstract This study was conducted to assess the in vitro response of human periodontal ligament stem cells (hPDLSCs) to bacterial lipopolysaccharide (LPS) activation and application of three calcium silicate-based materials (CSBM): Bio-C Sealer, MTA Fillapex and Cimmo HP. Characterization of the CSBM was performed by FTIR (n = 3). Extracts of Bio-C Sealer, MTA Fillapex and Cimmo HP were prepared and diluted (1:1, 1:4 and 1:16). Culture of hPDLSCs was established and treated or not with LPS from Escherichia coli (1 µg/mL) for 7 days. MTT assay was used to assess cell viability at 24, 48 and 72 h (n = 9). Alkaline phosphatase (ALP) activity was indirectly assayed at day 7 (n = 5). TNF-α and Il -1 0 cytokines were quantified by ELISA at 24h-cell supernatants (n = 6). Data were analyzed by ANOVA and Tukey's test (α = 0.05). The cell viability of the LPS-activated hPDLSCs were higher than untreated control (p < 0.05). The application of CSBM affected the cell viability of untreated and LPS-activated cells (p < 0.05). ALP activity was higher for Bio-C Sealer and Cimmo HP in untreated and LPS-activated cells, respectively (p < 0.05). Application of CSBM normalized the TNF-α secretion in the LPS-activated cells (p < 0.05). Only MTA Fillapex in untreated hPDLSCs presented higher values of Il -1 0 (p < 0.05). Taken collectively, the results suggests that the simulation of the inflammatory process by LPS affect the in vitro response the hPDLSCs to the application of the CSBM.


Resumo Este estudo objetivou avaliar a resposta in vitro de células-tronco do ligamento periodontal humano (hPDLSCs) à ativação por lipopolissacarídeo bacteriano (LPS) e aplicação de três materiais à base de silicato de cálcio (CSBM): Bio-C Sealer, MTA Fillapex e Cimmo HP. A caracterização dos CSBM foi realizada por FTIR (n = 3). Extratos de Bio-C Sealer, MTA Fillapex e Cimmo HP foram preparados e diluídos (1:1, 1: 4 e 1:16). A cultura de hPDLSCs foi estabelecida e tratada ou não com 1 µg / mL de LPS de Escherichia coli por 7 dias. O ensaio de MTT foi usado para avaliar a viabilidade celular em 24, 48 e 72 h (n = 9). A atividade de ALP foi avaliada indiretamente no dia 7 (n = 5). As citocinas TNF-α e Il-10 foram quantificadas por ELISA em sobrenadantes de células em 24h (n = 6). Os dados foram analisados por ANOVA e teste de Tukey (α = 0,05). A viabilidade celular das hPDLSCs ativados por LPS foi maior do que o controle (p <0,05). A aplicação dos CSBM afetou a viabilidade celular de células ativadas ou não por LPS (p <0,05). A atividade de ALP foi maior para Bio-C Sealer e Cimmo HP em células não ativadas e ativadas por LPS, respectivamente (p <0,05). A aplicação dos CSBM normalizou a secreção de TNF-α nas células ativadas por LPS (p <0,05). Apenas o MTA Fillapex em hPDLSCs não ativadas apresentou valores mais elevados de Il-10 (p <0,05). Em conclusão, os resultados sugerem que a simulação do processo inflamatório por LPS afetou a resposta in vitro de células-tronco do ligamento periodontal e de materiais à base de silicato de cálcio.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA