Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Nucleic Acids Res ; 52(2): 513-524, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38100361

RESUMO

Protein translation is orchestrated through tRNA aminoacylation and ribosomal elongation. Among the highly conserved structure of tRNAs, they have distinguishing features which promote interaction with their cognate aminoacyl tRNA synthetase (aaRS). These key features are referred to as identity elements. In our study, we investigated the tRNA:aaRS pair that installs the 22nd amino acid, pyrrolysine (tRNAPyl:PylRS). Pyrrolysyl-tRNA synthetases (PylRSs) are naturally encoded in some archaeal and bacterial genomes to acylate tRNAPyl with pyrrolysine. Their large amino acid binding pocket and poor recognition of the tRNA anticodon have been instrumental in incorporating >200 noncanonical amino acids. PylRS enzymes can be divided into three classes based on their genomic structure. Two classes contain both an N-terminal and C-terminal domain, however the third class (ΔpylSn) lacks the N-terminal domain. In this study we explored the tRNA identity elements for a ΔpylSn tRNAPyl from Candidatus Methanomethylophilus alvus which drives the orthogonality seen with its cognate PylRS (MaPylRS). From aminoacylation and translation assays we identified five key elements in ΔpylSn tRNAPyl necessary for MaPylRS activity. The absence of a base (position 8) and a G-U wobble pair (G28:U42) were found to affect the high-resolution structure of the tRNA, while molecular dynamic simulations led us to acknowledge the rigidity imparted from the G-C base pairs (G3:C70 and G5:C68).


Enzymes known as PylRS offer the remarkable ability to expand the natural genetic code of a living cell with unnatural amino acids. Currently, over 200 unnatural amino acids can be genetically encoded with the help of PylRS and its partner tRNAPyl, enabling us to endow proteins with novel properties, or regulate protein activity using light or inducible cross-linking. One intriguing feature of PylRS enzymes is their ability to avoid cross-reactivity when two PylRS homologs from different organisms-such as those from the archaea Methanosarcina mazei and Methanomethylophilus alvus-are co-expressed in a single cell. This makes it possible to simultaneously encode two unnatural amino acids in a single protein. This study illuminates the elusive mechanism of PylRS specificity by using cryo-electron microscopy, biochemistry and molecular simulations. The interaction of PylRS from M. alvus with its tRNAPyl is best described as two pieces of a jigsaw puzzle; in which PylRS recognizes the unique shape of its cognate tRNA instead of specific nucleotides in the tRNA sequence like other tRNA-binding enzymes. This finding may streamline the rational design of tools for simultaneous genetic incorporation of multiple unnatural amino acids, thereby facilitating the development of valuable proteins for research, medicine, and biotechnology.


Assuntos
Aminoacil-tRNA Sintetases , Archaea , Microbioma Gastrointestinal , Humanos , Aminoácidos/metabolismo , Aminoacil-tRNA Sintetases/isolamento & purificação , Aminoacil-tRNA Sintetases/metabolismo , Archaea/enzimologia , RNA de Transferência/química , RNA de Transferência/metabolismo , Aminoacilação de RNA de Transferência
2.
MAbs ; 15(1): 2220839, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288872

RESUMO

Antibody-based therapeutics represent an important class of biopharmaceuticals in cancer immunotherapy. CD3 bispecific T-cell engagers activate cytotoxic T-cells and have shown remarkable clinical outcomes against several hematological malignancies. The absence of a costimulatory signal through CD28 typically leads to insufficient T-cell activation and early exhaustion. The combination of CD3 and CD28 targeting products offers an attractive strategy to boost T-cell activity. However, the development of CD28-targeting therapies ceased after TeGenero's Phase 1 trial in 2006 evaluating a superagonistic anti-CD28 antibody (TGN1412) resulted in severe life-threatening side effects. Here, we describe the generation of a novel fully human anti-CD28 antibody termed "E1P2" using phage display technology. E1P2 bound to human and mouse CD28 as shown by flow cytometry on primary human and mouse T-cells. Epitope mapping revealed a conformational binding epitope for E1P2 close to the apex of CD28, similar to its natural ligand and unlike the lateral epitope of TGN1412. E1P2, in contrast to TGN1412, showed no signs of in vitro superagonistic properties on human peripheral blood mononuclear cells (PBMCs) using different healthy donors. Importantly, an in vivo safety study in humanized NSG mice using E1P2, in direct comparison and contrast to TGN1412, did not cause cytokine release syndrome. In an in vitro activity assay using human PBMCs, the combination of E1P2 with CD3 bispecific antibodies enhanced tumor cell killing and T-cell proliferation. Collectively, these data demonstrate the therapeutic potential of E1P2 to improve the activity of T-cell receptor/CD3 activating constructs in targeted immunotherapeutic approaches against cancer or infectious diseases.


Assuntos
Leucócitos Mononucleares , Linfócitos T , Humanos , Camundongos , Animais , Leucócitos Mononucleares/metabolismo , Antígenos CD28 , Receptores de Antígenos de Linfócitos T/metabolismo , Epitopos/metabolismo , Ativação Linfocitária , Complexo CD3
3.
MAbs ; 15(1): 2217964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37243574

RESUMO

There are no effective treatment options for most patients with metastatic colorectal cancer (mCRC). mCRC remains a leading cause of tumor-related death, with a five-year survival rate of only 15%, highlighting the urgent need for novel pharmacological products. Current standard drugs are based on cytotoxic chemotherapy, VEGF inhibitors, EGFR antibodies, and multikinase inhibitors. The antibody-based delivery of pro-inflammatory cytokines provides a promising and differentiated strategy to improve the treatment outcome for mCRC patients. Here, we describe the generation of a novel fully human monoclonal antibody (termed F4) targeting the carcinoembryonic antigen (CEA), a tumor-associated antigen overexpressed in colorectal cancer and other malignancies. The F4 antibody was selected by antibody phage display technology after two rounds of affinity maturation. F4 in single-chain variable fragment format bound to CEA in surface plasmon resonance with an affinity of 7.7 nM. Flow cytometry and immunofluorescence on human cancer specimens confirmed binding to CEA-expressing cells. F4 selectively accumulated in CEA-positive tumors, as evidenced by two orthogonal in vivo biodistribution studies. Encouraged by these results, we genetically fused murine interleukin (IL) 12 to F4 in the single-chain diabody format. F4-IL12 exhibited potent antitumor activity in two murine models of colon cancer. Treatment with F4-IL12 led to an increased density of tumor-infiltrating lymphocytes and an upregulation of interferon γ expression by tumor-homing lymphocytes. These data suggest that the F4 antibody is an attractive delivery vehicle for targeted cancer therapy.


Assuntos
Antígeno Carcinoembrionário , Neoplasias Colorretais , Humanos , Camundongos , Animais , Antígeno Carcinoembrionário/metabolismo , Distribuição Tecidual , Anticorpos Monoclonais , Interleucina-12 , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia
4.
Protein Sci ; 31(12): e4486, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36317676

RESUMO

Programmed cell death protein 1 (PD-1) is an immunoregulatory target which is recognized by different monoclonal antibodies, approved for the therapy of multiple types of cancer. Different anti-PD-1 antibodies display different therapeutic properties and there is a pharmaceutical interest to generate and characterize novel anti-PD-1 antibodies. We screened multiple human antibody phage display libraries to target novel epitopes on the PD-1 surface and we discovered a unique and previously undescribed binding specificity (termed D12) from a new antibody library (termed AMG). The library featured antibody fragments in single-chain fragment variable (scFv) format, based on the IGHV3-23*03 (VH ) and IGKV1-39*01 (Vκ) genes. The D12 antibody was characterized by surface plasmon resonance (SPR), cross-reacted with the Cynomolgus monkey antigen and bound to primary human T cells, as shown by flow cytometry. The antibody blocked the PD-1/PD-L1 interaction in vitro with an EC50 value which was comparable to the one of nivolumab, a clinically approved antibody. The fine details of the interaction between D12 and PD-1 were elucidated by x-ray crystallography of the complex at a 3.5 Å resolution, revealing an unprecedented conformational change at the N-terminus of PD-1 following D12 binding, as well as partial overlap with the binding site for the cognate PD-L1 and PD-L2 ligands which prevents their binding. The results of the study suggest that the expansion of antibody library repertoires may facilitate the discovery of novel binding specificities with unique properties that hold promises for the modulation of PD-1 activity in vitro and in vivo.


Assuntos
Antígeno B7-H1 , Bacteriófagos , Animais , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Biblioteca de Peptídeos , Macaca fascicularis/genética , Macaca fascicularis/metabolismo , Anticorpos Monoclonais/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Especificidade de Anticorpos
5.
J Exp Clin Cancer Res ; 40(1): 319, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645505

RESUMO

BACKGROUND: Cancer stem cells (CSC) have been implicated in tumor progression. In ovarian carcinoma (OC), CSC drive tumor formation, dissemination and recurrence, as well as drug resistance, thus contributing to the high death-to-incidence ratio of this disease. However, the molecular basis of such a pathogenic role of ovarian CSC (OCSC) has been elucidated only to a limited extent. In this context, the functional contribution of the L1 cell adhesion molecule (L1CAM) to OC stemness remains elusive. METHODS: The expression of L1CAM was investigated in patient-derived OCSC. The genetic manipulation of L1CAM in OC cells provided gain and loss-of-function models that were then employed in cell biological assays as well as in vivo tumorigenesis experiments to assess the role of L1CAM in OC cell stemness and in OCSC-driven tumor initiation. We applied antibody-mediated neutralization to investigate L1CAM druggability. Biochemical approaches were then combined with functional in vitro assays to study the molecular mechanisms underlying the functional role of L1CAM in OCSC. RESULTS: We report that L1CAM is upregulated in patient-derived OCSC. Functional studies showed that L1CAM promotes several stemness-related properties in OC cells, including sphere formation, tumor initiation and chemoresistance. These activities were repressed by an L1CAM-neutralizing antibody, pointing to L1CAM as a druggable target. Mechanistically, L1CAM interacted with and activated fibroblast growth factor receptor-1 (FGFR1), which in turn induced the SRC-mediated activation of STAT3. The inhibition of STAT3 prevented L1CAM-dependent OC stemness and tumor initiation. CONCLUSIONS: Our study implicate L1CAM in the tumorigenic function of OCSC and point to the L1CAM/FGFR1/SRC/STAT3 signaling pathway as a novel driver of OC stemness. We also provide evidence that targeting this pathway can contribute to OC eradication.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neoplasias Ovarianas/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Fator de Transcrição STAT3/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Células HEK293 , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Neoplasias Ovarianas/patologia , Transdução de Sinais
6.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576184

RESUMO

Antibody-cytokine fusion proteins (immunocytokines) are gaining importance for cancer therapy, but those products are often limited by systemic toxicity related to the activity of the cytokine payload in circulation and in secondary lymphoid organs. Tumor necrosis factor (TNF) is used as a pro-inflammatory payload to trigger haemorrhagic necrosis and boost anti-cancer immunity at the tumor site. Here we describe a depotentiated version of TNF (carrying the single point mutation I97A), which displayed reduced binding affinity to its cognate receptor tumor necrosis factor receptor 1 (TNFR-1) and lower biocidal activity. The fusion of the TNF(I97A) mutant to the L19 antibody promoted restoration of anti-tumor activity upon accumulation on the cognate antigen, the alternatively spliced EDB domain of fibronectin. In vivo administration of high doses (375 µg/Kg) of the fusion protein showed a potent anti-tumor effect without apparent toxicity compared with the wild type protein. L19-TNFI97A holds promise for the targeted delivery of TNF activity to neoplastic lesions, helping spare normal tissues.


Assuntos
Receptores do Fator de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais Humanizados/genética , Anticorpos Monoclonais Humanizados/metabolismo , Cricetulus , Citocinas/genética , Citocinas/metabolismo , Feminino , Fibronectinas/genética , Fibronectinas/metabolismo , Imunofluorescência , Imunoterapia , Camundongos Endogâmicos BALB C , Mutação , Estrutura Secundária de Proteína , Receptores do Fator de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/genética
7.
Front Mol Biosci ; 8: 669897, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34250015

RESUMO

Around half of the traumatic brain injuries are thought to be axonal damage. Disruption of the cellular membranes, or alternatively cytoskeletal damage has been suggested as possible injury trigger. Here, we have used molecular models to have a better insight on the structural and mechanical properties of axon sub-cellular components. We modelled myelin sheath and node of Ranvier as lipid bilayers at a coarse grained level. We built ex-novo a model for the myelin. Lipid composition and lipid saturation were based on the available experimental data. The model contains 17 different types of lipids, distributed asymmetrically between two leaflets. Molecular dynamics simulations were performed to characterize the myelin and node-of-Ranvier bilayers at equilibrium and under deformation and compared to previous axolemma simulations. We found that the myelin bilayer has a slightly higher area compressibility modulus and higher rupture strain than node of Ranvier. Compared to the axolemma in unmyelinated axon, mechanoporation occurs at 50% higher strain in the myelin and at 23% lower strain in the node of Ranvier in myelinated axon. Combining the results with finite element simulations of the axon, we hypothesizes that myelin does not rupture at the thresholds proposed in the literature for axonal injury while rupture may occur at the node of Ranvier. The findings contribute to increases our knowledge of axonal sub-cellular components and help to understand better the mechanism behind axonal brain injury.

8.
Int J Mol Sci ; 22(7)2021 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-33801620

RESUMO

BACKGROUND AND AIMS: Pulmonary hypertension (PH) is a heterogeneous disorder associated with poor prognosis. For the majority of patients, only limited therapeutic options are available. Thus, there is great interest to develop novel treatment strategies focusing on pulmonary vascular and right ventricular remodeling. Interleukin 9 (IL9) is a pleiotropic cytokine with pro- and anti-inflammatory functions. The aim of this study was to evaluate the therapeutic activity of F8IL9F8 consisting of IL9 fused to the F8 antibody, specific to the alternatively-spliced EDA domain of fibronectin, which is abundantly expressed in pulmonary vasculature and right ventricular myocardium in PH. METHODS: The efficacy of F8IL9F8 in attenuating PH progression in the monocrotaline mouse model was evaluated in comparison to an endothelin receptor antagonist (ERA) or an IL9 based immunocytokine with irrelevant antibody specificity (KSFIL9KSF). Treatment effects were assessed by right heart catheterization, echocardiography as well as histological and immunohistochemical tissue analyses. RESULTS: Compared to controls, systolic right ventricular pressure (RVPsys) was significantly elevated and a variety of right ventricular echocardiographic parameters were significantly impaired in all MCT-induced PH groups except for the F8IL9F8 group. Both, F8IL9F8 and ERA treatments lead to a significant reduction in RVPsys and an improvement of echocardiographic parameters when compared to the MCT group not observable for the KSFIL9KSF group. Only F8IL9F8 significantly reduced lung tissue damage and displayed a significant decrease of leukocyte and macrophage accumulation in the lungs and right ventricles. CONCLUSIONS: Our study provides first pre-clinical evidence for the use of F8IL9F8 as a new therapeutic agent for PH in terms of a disease-modifying concept addressing cardiovascular remodeling.


Assuntos
Anticorpos/química , Hipertensão Pulmonar/terapia , Interleucina-9/uso terapêutico , Animais , Células CHO , Cricetulus , Citocinas/metabolismo , Modelos Animais de Doenças , Portadores de Fármacos , Ecocardiografia , Antagonistas dos Receptores de Endotelina/química , Hemodinâmica , Hipertensão Pulmonar/imunologia , Imuno-Histoquímica , Inflamação , Interleucina-9/administração & dosagem , Leucócitos/metabolismo , Pulmão/metabolismo , Macrófagos/metabolismo , Camundongos , Ligação Proteica , Função Ventricular Direita
9.
Mol Cancer Ther ; 20(5): 859-871, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33632875

RESUMO

IL15 is an immunostimulatory cytokine that holds promises for cancer therapy, but its performance (alone or as partner for fusion proteins) has often been limited by suboptimal accumulation in the tumor and very rapid clearance from circulation. Most recently, the Sushi Domain (SD, the shortest region of IL15 receptor α, capable of binding to IL15) has been fused to IL15-based anticancer products to increase its biological activity. Here, we describe two novel antibody fusion proteins (termed F8-F8-IL15 and F8-F8-SD-IL15), specific to the alternatively spliced EDA domain of fibronectin (a marker of tumor neoangiogenisis, expressed in the majority of solid and hematologic tumors, but absent in normal healthy tissues) and featuring the F8 antibody in single-chain diabody format (with a short linker between VH and VL, thus allowing the domains to pair with the complementary ones of another chain). Unlike previously described fusions of the F8 antibody with human IL15, F8-F8-IL15 and F8-F8-SD-IL15 exhibited a preferential uptake in solid tumors, as evidenced by quantitative biodistribution analysis with radioiodinated protein preparations. Both products were potently active in vivo against mouse metastatic colon carcinomas and in sarcoma lesion in combination with targeted TNF. The results may be of clinical significance, as F8-F8-IL15 and F8-F8-SD-IL15 are fully human proteins, which recognize the cognate tumor-associated antigen with identical affinity in mouse and man.


Assuntos
Interleucina-15/metabolismo , Metástase Neoplásica/tratamento farmacológico , Proteínas de Fusão Oncogênica/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos
10.
Mol Cancer Ther ; 20(3): 512-522, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33443104

RESUMO

Small molecule-drug conjugates (SMDCs) represent an alternative to conventional antitumor chemotherapeutic agents, with the potential to improve the therapeutic window of cytotoxic payloads through active delivery at the site of the disease. In this article, we describe novel combination therapies consisting of anti-carbonic anhydrase IX SMDCs combined with different immunomodulatory products. The therapeutic effect of the SMDCs was potentiated by combination with PD-1 blockade and with tumor-homing antibody-cytokine fusions in mouse models of renal cell carcinoma and colorectal cancer. The combination with L19-IL12, a fusion protein specific to the alternatively spliced EDB domain of fibronectin containing the murine IL12 moiety, was also active against large established tumors. Analysis of the microscopic structures of healthy organs performed 3 months after tumor eradication confirmed absence of pathologic abnormalities in the healthy kidney, liver, lung, stomach, and intestine. Our findings may be of clinical significance as they provide motivation for the development of combinations based on SMDCs and immunotherapy for the treatment of renal cell carcinoma and hypoxic tumors.


Assuntos
Antineoplásicos/uso terapêutico , Anidrase Carbônica IX/metabolismo , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunoterapia/métodos , Animais , Antineoplásicos/farmacologia , Feminino , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Camundongos , Camundongos Nus
11.
Exp Biol Med (Maywood) ; 246(8): 940-951, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33475433

RESUMO

Interleukin-9 is a cytokine with multiple functions, including the ability to activate group 2 innate lymphoid cells, which has been postulated to be therapeutically active in mouse models of arthritis. Similarly, interleukin-9 has been suggested to play an important role in tumor immunity. Here, we describe the cloning, expression, and characterization of three fusion proteins based on murine interleukin-9 and the F8 antibody, specific to the alternatively spliced EDA domain of fibronectin. EDA is strongly expressed in cancer and in various arthritic conditions, while being undetectable in the majority of healthy organs. Interleukin-9-based fusion proteins with an irrelevant antibody specific to hen egg lysozyme served as negative control in our study. The fusion proteins were characterized by quantitative biodistribution analysis in tumor-bearing mice using radioiodinated protein preparations. The highest tumor uptake and best tumor:organ ratios were observed for a format, in which the interleukin-9 moiety was flanked by two units of the F8 antibody in single-chain Fv format. Biological activity of interleukin-9 was retained when the payload was fused to antibodies. However, the targeted delivery of interleukin-9 to the disease site resulted in a modest anti-tumor activity in three different murine models of cancer (K1735M2, CT26, and F9), while no therapeutic benefit was observed in a collagen induced model of arthritis. Collectively, these results confirm the possibility to deliver interleukin-9 to the site of disease but cast doubts about the alleged therapeutic activity of this cytokine in cancer and arthritis, which has been postulated in previous publications.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Artrite Experimental/tratamento farmacológico , Interleucina-9/farmacologia , Neoplasias Experimentais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única/farmacologia , Animais , Anticorpos Monoclonais Humanizados/genética , Artrite Experimental/genética , Artrite Experimental/metabolismo , Sistemas de Liberação de Medicamentos , Avaliação de Medicamentos , Interleucina-9/genética , Masculino , Camundongos , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Proteínas Recombinantes de Fusão/genética , Anticorpos de Cadeia Única/genética
12.
J Struct Biol ; 213(1): 107696, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33493635

RESUMO

The use of immunomodulatory agents for the treatment of cancer is gaining a growing biopharmaceutical interest. Antibody-cytokine fusion proteins, namely immunocytokines, represent a promising solution for the regulation of the immune system at the site of disease. The three-dimensional arrangement of these molecules can profoundly influence their biological activity and pharmacokinetic properties. Structural techniques might provide important insight in the 3D arrangement of immunocytokines. Here, we performed structure investigations on clinical grade fusion proteins L19-IL2, IL12-L19L19 and L19L19-IL2 to elucidate their quaternary organization. Crystallographic characterization of the common L19 antibody fragment at a resolution of 2.0-Å was combined with low-resolution studies of the full-length chimeric molecules using small-angle synchrotron X-ray scattering (SAXS) and negative stain electron microscopy. Characterization of the full-length quaternary structures of the immunocytokines in solution by SAXS consistently supported the diabody structure in the L19-IL2 immunocytokine and allowed generation of low-resolution models of the chimeric proteins L19L19-IL2 and IL12-L19L19. Comparison with 3D reconstructions obtained from negative-stain electron microscopy revealed marked flexibility associated to the linker regions connecting the cytokine and the antibody components of the chimeric proteins. Collectively, our results indicate that low-resolution molecular structure characterizations provide useful complementary insights for the quality control of immunocytokines, constituting a powerful tool to guide the design and the subsequent optimization steps towards clinical enhancement of these chimeric protein reagents.


Assuntos
Citocinas/química , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Estrutura Molecular , Proteínas Recombinantes de Fusão/química , Espalhamento a Baixo Ângulo , Difração de Raios X/métodos
13.
Proc Natl Acad Sci U S A ; 117(50): 31780-31788, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33239441

RESUMO

Engineered cytokines are gaining importance in cancer therapy, but these products are often limited by toxicity, especially at early time points after intravenous administration. 4-1BB is a member of the tumor necrosis factor receptor superfamily, which has been considered as a target for therapeutic strategies with agonistic antibodies or using its cognate cytokine ligand, 4-1BBL. Here we describe the engineering of an antibody fusion protein, termed F8-4-1BBL, that does not exhibit cytokine activity in solution but regains biological activity on antigen binding. F8-4-1BBL bound specifically to its cognate antigen, the alternatively spliced EDA domain of fibronectin, and selectively localized to tumors in vivo, as evidenced by quantitative biodistribution experiments. The product promoted a potent antitumor activity in various mouse models of cancer without apparent toxicity at the doses used. F8-4-1BBL represents a prototype for antibody-cytokine fusion proteins, which conditionally display "activity on demand" properties at the site of disease on antigen binding and reduce toxicity to normal tissues.


Assuntos
Ligante 4-1BB/administração & dosagem , Antígenos de Neoplasias/administração & dosagem , Neoplasias/tratamento farmacológico , Proteínas Recombinantes de Fusão/administração & dosagem , Ligante 4-1BB/genética , Ligante 4-1BB/imunologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral/transplante , Modelos Animais de Doenças , Feminino , Fibronectinas/genética , Fibronectinas/imunologia , Humanos , Camundongos , Neoplasias/imunologia , Domínios Proteicos/genética , Domínios Proteicos/imunologia , Engenharia de Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia
14.
MAbs ; 12(1): 1836713, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33136526

RESUMO

Antibody-based delivery of bioactive molecules represents a promising strategy for the improvement of cancer immunotherapy. Here, we describe the generation and characterization of R6N, a novel fully human antibody specific to the alternatively spliced domain D of Tenascin C, which is highly expressed in the stroma of primary tumors and metastasis. The R6N antibody recognized its cognate tumor-associated antigen with identical specificity in mouse and human specimens. Moreover, the antibody was able to selectively localize to solid tumors in vivo as evidenced by immunofluorescence-based biodistribution analysis. Encouraged by these results, we developed a novel fusion protein (termed mIL12-R6N) consisting of the murine interleukin 12 fused to the R6N antibody in homodimeric tandem single-chain variable fragment arrangement. mIL12-R6N exhibited potent antitumor activity in immunodeficient mice bearing SKRC52 renal cell carcinoma, as well as in immunocompetent mice bearing SMA-497 glioma. The experiments presented in this work provide a rationale for possible future applications for the R6N antibody for the treatment of cancer patients.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Interleucina-12/administração & dosagem , Neoplasias Experimentais , Tenascina/antagonistas & inibidores , Processamento Alternativo , Animais , Humanos , Camundongos , Terapia de Alvo Molecular/métodos , Proteínas Recombinantes de Fusão/farmacologia , Anticorpos de Cadeia Única
15.
Mol Cell ; 80(3): 423-436.e9, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33022275

RESUMO

The ubiquitin system regulates the DNA damage response (DDR) by modifying histone H2A at Lys15 (H2AK15ub) and triggering downstream signaling events. Here, we find that phosphorylation of ubiquitin at Thr12 (pUbT12) controls the DDR by inhibiting the function of 53BP1, a key factor for DNA double-strand break repair by non-homologous end joining (NHEJ). Detectable as a chromatin modification on H2AK15ub, pUbT12 accumulates in nuclear foci and is increased upon DNA damage. Mutating Thr12 prevents the removal of ubiquitin from H2AK15ub by USP51 deubiquitinating enzyme, leading to a pronounced accumulation of ubiquitinated chromatin. Chromatin modified by pUbT12 is inaccessible to 53BP1 but permissive to the homologous recombination (HR) proteins RNF169, RAD51, and the BRCA1/BARD1 complex. Phosphorylation of ubiquitin at Thr12 in the chromatin context is a new histone mark, H2AK15pUbT12, that regulates the DDR by hampering the activity of 53BP1 at damaged chromosomes.


Assuntos
Dano ao DNA/fisiologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Recombinação Homóloga/fisiologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Fosforilação , Transdução de Sinais/genética , Treonina/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/fisiologia , Ubiquitina/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
16.
Oncotarget ; 11(41): 3698-3711, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33110477

RESUMO

The targeted delivery of interleukin-2 to the tumor is gaining attention as an avenue to potentiate the action of T and NK cells at the site of disease. We have previously described the fusion of the L19 antibody, specific to the EDB domain of fibronectin, with human interleukin-2, using a non-covalent homodimeric diabody format. Here, we describe four novel formats for the L19-IL2 fusion, featuring different arrangements of antibody and IL2. A comparative quantitative biodistribution analysis in tumor-bearing mice using radioiodinated proteins revealed that the novel format (L19L19-IL2, with the antibody in single-chain diabody format) exhibited the best biodistribution results. In vitro assays on peripheral blood mononuclear cells showed a decrease activation of regulatory T cells when single IL2 domain was used. In vivo, both L19-IL2 and L19L19-IL2 inhibited tumor growth in immunocompetent mouse models of cancer. T-cell analysis revealed similar levels of CD4+ and FoxP3+ cells, with an expansion of the CD8+ T cell in mice treated with L19-IL2 and L19L19-IL2. The percentage of CD4+ regulatory T cells was markedly decreased with L19L19-IL2 combined with a mouse-specific PD-1 blocker. Collectively, these data indicate that the new L19L19-IL2 format exhibits favorable tumor-homing properties and mediates a potent anti-cancer activity in vivo.

17.
ACS Omega ; 5(40): 26077-26083, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33073134

RESUMO

Small ligands specific to tumor-associated antigens can be used as alternatives to antibodies for the delivery of small payloads such as radionuclides, cytotoxic drugs, and fluorophores. Their use as a delivery moiety of bioactive proteins such as cytokines remains largely unexplored. Here, we describe the preparation and in vivo characterization of the first small molecule-cytokine conjugate targeting carbonic anhydrase IX (CAIX), a marker of renal cell carcinoma and hypoxia. Site-specific conjugation between interleukin-2 and acetazolamide was obtained by sortase A-mediated transpeptidation. Binding of the conjugate to the cognate CAIX antigen was confirmed by surface plasmon resonance. The in vivo targeting of structures expressing carbonic anhydrase IX was assessed by biodistribution experiments in tumor-bearing mice. Optimization of manufacturability and tumor-targeting performance of acetazolamide-cytokine products will be required in order to enable industrial applications.

18.
Bioconjug Chem ; 31(7): 1775-1783, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32515934

RESUMO

All Universal Chimeric Antigen Receptor T-cells (UniCAR T-cells) are T-cells which have been engineered to recognize a haptenated ligand. Due to this feature, UniCAR T-cells have the potential to mediate a potent and selective tumor killing only in the presence of a haptenated tumor ligand, thus avoiding the long-lasting biocidal effects of conventional CAR T-cells. We have used fluorescein-labeled versions of small organic ligands and different antibody formats specific to carbonic anhydrase IX (a tumor-associated antigen) in order to assess whether the killing potential of UniCAR T-cells depended on the molecular features of the haptenated molecule. Both small molecule ligands and larger antibody fragments were potent in mediating tumor cell killing over a broad concentration range. Antibodies could be conveniently used both in IgG format and as smaller diabody fragments. Importantly, the use of site-specific chemical modification strategies for the antibody coupling to fluorescein led to a substantial improvement of tumor cell killing performance, compared to the random modification of primary amino groups on the antibody surface.


Assuntos
Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Antígenos de Neoplasias/metabolismo , Apoptose/imunologia , Anidrase Carbônica IX/metabolismo , Linhagem Celular Tumoral , Fluoresceína/química , Humanos , Cinética , Ligantes , Receptores de Antígenos Quiméricos/metabolismo
19.
Anticancer Drugs ; 31(8): 799-805, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32304410

RESUMO

Antibody-cytokine fusion proteins (also called 'immunocytokines') represent an emerging class of biopharmaceutical products, which are being considered for cancer immunotherapy. When used as single agents, pro-inflammatory immunocytokines are rarely capable of inducing complete and durable cancer regression in mouse models and in patients. However, the combination treatment with conventional chemotherapy or with other immune-stimulatory agents typically increases the therapeutic efficacy of immunocytokines. In this article, we describe combination treatments of a tumor-targeting antibody-cytokine fusion protein based on the L19 antibody (specific to a splice isoform of fibronectin) fused to murine tumor necrosis factor with standard chemotherapy (dacarbazine, trabectedin or melphalan) or with an immune check-point inhibitor (anti-PD-1) in a BALB/c derived immunocompetent murine model of sarcoma (WEHI-164). All combination treatments led to improved tumor remission compared to single-agent treatments, suggesting that these combination partners may be suitable for further clinical development in sarcoma patients.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Inibidores de Checkpoint Imunológico/administração & dosagem , Sarcoma/tratamento farmacológico , Animais , Apoptose , Proliferação de Células , Dacarbazina/administração & dosagem , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Recombinantes de Fusão/administração & dosagem , Sarcoma/imunologia , Sarcoma/patologia , Trabectedina/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Front Neurol ; 11: 25, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32082244

RESUMO

Traumatic brain injuries are a leading cause of morbidity and mortality worldwide. With almost 50% of traumatic brain injuries being related to axonal damage, understanding the nature of cellular level impairment is crucial. Experimental observations have so far led to the formulation of conflicting theories regarding the cellular primary injury mechanism. Disruption of the axolemma, or alternatively cytoskeletal damage has been suggested mainly as injury trigger. However, mechanoporation thresholds of generic membranes seem not to overlap with the axonal injury deformation range and microtubules appear too stiff and too weakly connected to undergo mechanical breaking. Here, we aim to shed a light on the mechanism of primary axonal injury, bridging finite element and molecular dynamics simulations. Despite the necessary level of approximation, our models can accurately describe the mechanical behavior of the unmyelinated axon and its membrane. More importantly, they give access to quantities that would be inaccessible with an experimental approach. We show that in a typical injury scenario, the axonal cortex sustains deformations large enough to entail pore formation in the adjoining lipid bilayer. The observed axonal deformation of 10-12% agree well with the thresholds proposed in the literature for axonal injury and, above all, allow us to provide quantitative evidences that do not exclude pore formation in the membrane as a result of trauma. Our findings bring to an increased knowledge of axonal injury mechanism that will have positive implications for the prevention and treatment of brain injuries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA