Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4972, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862491

RESUMO

Molecular doping plays an important role in controlling the carrier concentration of organic semiconductors. However, the introduction of dopant counterions often results in increased energetic disorder and traps due to the molecular packing disruption and Coulomb potential wells. To date, no general strategy has been proposed to reduce the counterion-induced structural and energetic disorder. Here, we demonstrate the critical role of non-covalent interactions (NCIs) between counterions and polymers. Employing a computer-aided approach, we identified the optimal counterions and discovered that NCIs determine their docking positions, which significantly affect the counterion-induced energetic disorder. With the optimal counterions, we successfully reduced the energetic disorder to levels even lower than that of the undoped polymer. As a result, we achieved a high n-doped electrical conductivity of over 200 S cm-1 and an eight-fold increase in the thermoelectric power factor. We found that the NCIs have substantial effects on doping efficiency, polymer backbone planarity, and Coulomb potential landscape. Our work not only provides a general strategy for identifying the most suitable counterions but also deepens our understanding of the counterion effects on doped polymeric semiconductors.

2.
Nat Commun ; 14(1): 4608, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528112

RESUMO

Non-fullerene based organic solar cells display a high initial power conversion efficiency but continue to suffer from poor thermal stability, especially in case of devices with thick active layers. Mixing of five structurally similar acceptors with similar electron affinities, and blending with a donor polymer is explored, yielding devices with a power conversion efficiency of up to 17.6%. The hexanary device performance is unaffected by thermal annealing of the bulk-heterojunction active layer for at least 23 days at 130 °C in the dark and an inert atmosphere. Moreover, hexanary blends offer a high degree of thermal stability for an active layer thickness of up to 390 nm, which is advantageous for high-throughput processing of organic solar cells. Here, a generic strategy based on multi-component acceptor mixtures is presented that permits to considerably improve the thermal stability of non-fullerene based devices and thus paves the way for large-area organic solar cells.

3.
ACS Appl Mater Interfaces ; 13(1): 411-418, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33373201

RESUMO

Molecular doping is a powerful tool to tune the thermoelectric (TE) properties of solution-processed semiconductors. In this work, we prepared a binary composite and effectively doped both of its constituents, that is, naphthalene diimide-bithiophene copolymers (PNDI2OD-T2) and single-walled carbon nanotubes (SWCNTs), by a 1H-benzimidazole derivative (N-DMBI). The doped composites show an n-type character and an in-plane TE figure of merit (ZT), exceeding the values obtained with the doped polymers. The use of SWCNTs consistently results in a higher σ with a maximum value above 102 S/cm, resulting in the highest power factor of 18.1 µW/mK2 for an SWCNT loading of 45.5 wt %. Furthermore, an SWCNT content up to 9 wt % does not compromise the low thermal conductivity of the polymer matrices, leading to a ZT value of 0.0045. The n-type composites show good solution processability and relatively stable Seebeck coefficients upon air exposure for 8 months.

4.
RSC Adv ; 11(45): 28072-28080, 2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35480771

RESUMO

Most studies to date on SnSe thermal transport are focused on single crystals and polycrystalline pellets that are obtained using high-temperature processing conditions and sophisticated instruments. The effects of using sub-10 nm-size SnSe nanocrystals on the thermal transport and thermoelectric properties have not been studied to the best of our knowledge. Here, we report the synthesis of sub-10 nm colloidal surfactant-free SnSe NCs at a relatively low temperature (80 °C) and investigate their thermoelectric properties. Pristine SnSe NCs exhibit p-type transport but have a modest power factor of 12.5 µW m-1 K-2 and ultralow thermal conductivity of 0.1 W m-1 K-1 at 473 K. Interestingly, the one-step post-synthesis treatment of NC film with methylammonium iodide can switch the p-type transport of the pristine film to n-type. The power factor improved significantly to 20.3 µW m-1 K-2, and the n-type NCs show record ultralow thermal conductivity of 0.14 W m-1 K-1 at 473 K. These surfactant-free SnSe NCs were then used to fabricate flexible devices that show superior performance to rigid devices. After 20 bending cycles, the flexible device shows a 34% loss in the power factor at room temperature (295 K). Overall, this work demonstrates p- and n-type transport in SnSe NCs via the use of simple one-step post-synthesis treatment, while retaining ultralow thermal conductivity.

5.
Adv Mater ; 33(4): e2006694, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33306230

RESUMO

There is no molecular strategy for selectively increasing the Seebeck coefficient without reducing the electrical conductivity for organic thermoelectrics. Here, it is reported that the use of amphipathic side chains in an n-type donor-acceptor copolymer can selectively increase the Seebeck coefficient and thus increase the power factor by a factor of ≈5. The amphipathic side chain contains an alkyl chain segment as a spacer between the polymer backbone and an ethylene glycol type chain segment. The use of this alkyl spacer does not only reduce the energetic disorder in the conjugated polymer film but can also properly control the dopant sites away from the backbone, which minimizes the adverse influence of counterions. As confirmed by kinetic Monte Carlo simulations with the host-dopant distance as the only variable, a reduced Coulombic interaction resulting from a larger host-dopant distance contributes to a higher Seebeck coefficient for a given electrical conductivity. Finally, an optimized power factor of 18 µW m-1 K-2 is achieved in the doped polymer film. This work provides a facile molecular strategy for selectively improving the Seebeck coefficient and opens up a new route for optimizing the dopant location toward realizing better n-type polymeric thermoelectrics.

6.
Adv Sci (Weinh) ; 7(10): 1903389, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32440477

RESUMO

The recent re-emergence of halide perovskites has received escalating interest for optoelectronic applications. In addition to photovoltaics, the multifunctional nature of halide perovskites has led to diverse applications. The ultralow thermal conductivity coupled with decent mobility and charge carrier tunability led to the prediction of halide perovskites as a possible contender for future thermoelectrics. Herein, recent advances in thermal transport of halide perovskites and their potentials and challenges for thermoelectrics are reviewed. An overview of the phonon behavior in halide perovskites, as well as the compositional dependency is analyzed. Understanding thermal transport and knowing the thermal conductivity value is crucial for creating effective heat dissipation schemes and determining other thermal-related properties like thermo-optic coefficients, hot-carrier cooling, and thermoelectric efficiency. Recent works on halide perovskite-based thermoelectrics together with theoretical predictions for their future viability are highlighted. Also, progress on modulating halide perovskite-based thermoelectric properties using light and chemical doping is discussed. Finally, strategies to overcome the limiting factors in halide perovskite thermoelectrics and their prospects are emphasized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA