RESUMO
Culturing and genomic sequencing of Mycobacterium tuberculosis (MTB) from tuberculosis (TB) cases is the basis for many research and clinical applications. The alternative, culture-free sequencing from diagnostic samples, is promising but poses challenges to obtain and analyse the MTB genome. Paradoxically, culture is assumed to impose a diversity bottleneck, which, if true, would entail unexplored consequences. To unravel this paradox we generate high-quality genomes of sputum-culture pairs from two different settings after developing a workflow for sequencing from sputum and a tailored bioinformatics analysis. Careful downstream comparisons reveal sources of sputum-culture incongruences due to false positive/negative variation associated with factors like low input MTB DNA or variable genomic depths. After accounting for these factors, contrary to the bottleneck dogma, we identify a 97% variant agreement within sputum-culture pairs, with a high correlation also in the variants' frequency (0.98). The combined analysis from five different settings and more than 100 available samples shows that our results can be extrapolated to different TB epidemic scenarios, demonstrating that for the cases tested culture accurately mirrors clinical samples.
Assuntos
Variação Genética , Mycobacterium tuberculosis , Escarro , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Escarro/microbiologia , Humanos , Tuberculose/microbiologia , Tuberculose/diagnóstico , Genoma Bacteriano , DNA Bacteriano/genética , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/diagnósticoRESUMO
Multidrug-resistant(MDR) tuberculosis in Southern Africa is of great concern, exacerbated by the spread of a clone harboring a mutation missed by Xpert Ultra. In Southern Mozambique, the presence of such mutation and rising cases of non-MDR isoniazid resistance highlights the need to ensure accurate detection of antimicrobial-resistance in the country.
Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Rifampina/farmacologia , Rifampina/uso terapêutico , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Farmacorresistência Bacteriana/genética , Moçambique , Mutação , Sensibilidade e EspecificidadeRESUMO
BACKGROUND: In June, 2021, WHO published the most complete catalogue to date of resistance-conferring mutations in Mycobacterium tuberculosis. Here, we aimed to assess the performance of genome-based antimicrobial resistance prediction using the catalogue and its potential for improving diagnostics in a real low-burden setting. METHODS: In this retrospective population-based genomic study M tuberculosis isolates were collected from 25 clinical laboratories in the low-burden setting of the Valencia Region, Spain. Culture-positive tuberculosis cases reported by regional public health authorities between Jan 1, 2014, and Dec 31, 2016, were included. The drug resistance profiles of these isolates were predicted by the genomic identification, via whole-genome sequencing (WGS), of the high-confidence resistance-causing variants included in the catalogue and compared with the phenotype. We determined the minimum inhibitory concentration (MIC) of the isolates with discordant resistance profiles using the resazurin microtitre assay. FINDINGS: WGS was performed on 785 M tuberculosis complex culture-positive isolates, and the WGS resistance prediction sensitivities were: 85·4% (95% CI 70·8-94·4) for isoniazid, 73·3% (44·9-92·2) for rifampicin, 50·0% (21·1-78·9) for ethambutol, and 57·1% (34·0-78·2) for pyrazinamide; all specificities were more than 99·6%. Sensitivity values were lower than previously reported, but the overall pan-susceptibility accuracy was 96·4%. Genotypic analysis revealed that four phenotypically susceptible isolates carried mutations (rpoB Leu430Pro and rpoB Ile491Phe for rifampicin and fabG1 Leu203Leu for isoniazid) known to give borderline resistance in standard phenotypic tests. Additionally, we identified three putative resistance-associated mutations (inhA Ser94Ala, katG Leu48Pro, and katG Gly273Arg for isoniazid) in samples with substantially higher MICs than those of susceptible isolates. Combining both genomic and phenotypic data, in accordance with the WHO diagnostic guidelines, we could detect two new multidrug-resistant cases. Additionally, we detected 11 (1·6%) of 706 isolates to be monoresistant to fluoroquinolone, which had been previously undetected. INTERPRETATION: We showed that the WHO catalogue enables the detection of resistant cases missed in phenotypic testing in a low-burden region, thus allowing for better patient-tailored treatment. We also identified mutations not included in the catalogue, relevant at the local level. Evidence from this study, together with future updates of the catalogue, will probably lead in the future to the partial replacement of culture testing with WGS-based drug susceptibility testing in our setting. FUNDING: European Research Council and the Spanish Ministerio de Ciencia.
Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Isoniazida/uso terapêutico , Rifampina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/diagnóstico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Testes de Sensibilidade Microbiana , Estudos Retrospectivos , Espanha/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Mutação/genética , Genômica , Organização Mundial da SaúdeRESUMO
Genomic studies of the Mycobacterium tuberculosis complex (MTBC) might shed light on the dynamics of its transmission, especially in high-burden settings, where recent outbreaks are embedded in the complex natural history of the disease. To this end, we conducted a 1 year prospective surveillance-based study in Mozambique. We applied whole-genome sequencing (WGS) to 295 positive cultures. We fully characterized MTBC isolates by phylogenetics and dating evaluation, and carried out a molecular epidemiology analysis to investigate further associations with pre-defined transmission risk factors. The majority of strains (49.5%, 136/275) belonged to lineage (L) 4; 57.8â% of them (159/275) were in genomic transmission clusters (cut-off 5 SNPs), and a strikingly high proportion (45.5%) shared an identical genotype (0 SNP pairwise distance). We found two 'likely endemic' clades, comprising 67 strains, belonging to L1.2, which dated back to the late 19th century and were associated with recent spread among people living with human immunodeficiency virus (PLHIV). We describe for the first time the population structure of MTBC in our region, a high tuberculosis (TB)/HIV burden area. Clustering analysis revealed an unforeseen pattern of spread and high rates of progression to active TB, suggesting weaknesses in TB control activities. The long-term presence of local strains in Mozambique, which were responsible for large transmission among HIV/TB-coinfected patients, calls into question the role of HIV in TB transmission.
Assuntos
Infecções por HIV , Mycobacterium tuberculosis , Tuberculose , Infecções por HIV/epidemiologia , Humanos , Moçambique/epidemiologia , Mycobacterium tuberculosis/genética , Estudos Prospectivos , Tuberculose/epidemiologiaRESUMO
Transmission is a driver of tuberculosis (TB) epidemics in high-burden regions, with assumed negligible impact in low-burden areas. However, we still lack a full characterization of transmission dynamics in settings with similar and different burdens. Genomic epidemiology can greatly help to quantify transmission, but the lack of whole genome sequencing population-based studies has hampered its application. Here, we generate a population-based dataset from Valencia region and compare it with available datasets from different TB-burden settings to reveal transmission dynamics heterogeneity and its public health implications. We sequenced the whole genome of 785 Mycobacterium tuberculosis strains and linked genomes to patient epidemiological data. We use a pairwise distance clustering approach and phylodynamic methods to characterize transmission events over the last 150 years, in different TB-burden regions. Our results underscore significant differences in transmission between low-burden TB settings, i.e., clustering in Valencia region is higher (47.4%) than in Oxfordshire (27%), and similar to a high-burden area as Malawi (49.8%). By modeling times of the transmission links, we observed that settings with high transmission rate are associated with decades of uninterrupted transmission, irrespective of burden. Together, our results reveal that burden and transmission are not necessarily linked due to the role of past epidemics in the ongoing TB incidence, and highlight the need for in-depth characterization of transmission dynamics and specifically tailored TB control strategies.
Assuntos
Epidemias , Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Dinâmica Populacional , Tuberculose/epidemiologia , Sequenciamento Completo do GenomaRESUMO
A rapid and accurate diagnostic assay represents an important means to detect Mycobacterium tuberculosis, identify drug-resistant strains and ensure treatment success. Currently employed techniques to diagnose drug-resistant tuberculosis include slow phenotypic tests or more rapid molecular assays that evaluate a limited range of drugs. Whole-genome-sequencing-based approaches can detect known drug-resistance-conferring mutations and novel variations; however, the dependence on growing samples in culture, and the associated delays in achieving results, represents a significant limitation. As an alternative, targeted sequencing strategies can be directly performed on clinical samples at high throughput. This study proposes a targeted sequencing assay to rapidly detect drug-resistant strains of M. tuberculosis using the Nanopore MinION sequencing platform. We designed a single-tube assay that targets nine genes associated with drug resistance to seven drugs and two phylogenetic-determining regions to determine strain lineage and tested it in nine clinical isolates and six sputa. The study's main aim is to calibrate MinNION variant calling to detect drug-resistance-associated mutations with different frequencies to match the accuracy of Illumina (the current gold-standard sequencing technology) from both culture and sputum samples. After calibrating Nanopore MinION variant calling, we demonstrated 100% agreement between Illumina WGS and our MinION set up to detect known drug resistance and phylogenetic variants in our dataset. Importantly, other variants in the amplicons are also detected, decreasing the recall. We identify minority variants and insertions/deletions as crucial bioinformatics challenges to fully reproduce Illumina WGS results.
Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana , Mycobacterium tuberculosis/genética , Sequenciamento por Nanoporos/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/efeitos dos fármacos , Filogenia , Análise de Sequência de DNA , Escarro/microbiologiaRESUMO
Efforts to eradicate tuberculosis are hampered by the rise and spread of antibiotic resistance. Several large-scale projects have aimed to specifically link clinical mutations to resistance phenotypes, but they were limited in both their explanatory and predictive powers. Here, we combine functional genomics and phylogenetic associations using clinical strain genomes to decipher the architecture of isoniazid resistance and search for new resistance determinants. This approach has allowed us to confirm the main target route of the antibiotic, determine the clinical relevance of redox metabolism as an isoniazid resistance mechanism and identify novel candidate genes harboring resistance mutations in strains with previously unexplained isoniazid resistance. This approach can be useful for characterizing how the tuberculosis bacilli acquire resistance to new antibiotics and how to forestall them.
Assuntos
Antituberculosos/farmacologia , Farmacorresistência Bacteriana/genética , Genoma Bacteriano , Isoniazida/farmacologia , Mycobacterium tuberculosis/genética , Evolução Molecular , Genômica , Mycobacterium tuberculosis/efeitos dos fármacosRESUMO
Polyclonal infections occur when at least two unrelated strains of the same pathogen are detected in an individual. This has been linked to worse clinical outcomes in tuberculosis, as undetected strains with different antibiotic resistance profiles can lead to treatment failure. Here, we examine the amount of polyclonal infections in sputum and surgical resections from patients with tuberculosis in the country of Georgia. For this purpose, we sequence and analyse the genomes of Mycobacterium tuberculosis isolated from the samples, acquired through an observational clinical study (NCT02715271). Access to the lung enhanced the detection of multiple strains (40% of surgery cases) as opposed to just using a sputum sample (0-5% in the general population). We show that polyclonal infections often involve genetically distant strains and can be associated with reversion of the patient's drug susceptibility profile over time. In addition, we find different patterns of genetic diversity within lesions and across patients, including mutational signatures known to be associated with oxidative damage; this suggests that reactive oxygen species may be acting as a selective pressure in the granuloma environment. Our results support the idea that the magnitude of polyclonal infections in high-burden tuberculosis settings is underestimated when only testing sputum samples.
Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano , Granuloma/patologia , Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/patologia , Tuberculose Pulmonar/patologia , Antituberculosos/uso terapêutico , Biópsia , Células Clonais , Estudos de Coortes , Variação Genética , República da Geórgia , Granuloma/tratamento farmacológico , Granuloma/microbiologia , Granuloma/cirurgia , Humanos , Pulmão/microbiologia , Pulmão/patologia , Pulmão/cirurgia , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/patogenicidade , Espécies Reativas de Oxigênio/metabolismo , Escarro/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/cirurgia , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/cirurgiaRESUMO
Tuberculosis (TB) surveillance is scarce in most African countries, even though it is the continent with the greatest disease incidence according to the World Health Organization. Liberia is within the 30 countries with the highest TB burden, probably as a consequence of the long civil war and the recent Ebola outbreak, both crippling the health system and depreciating the TB prevention and control programmes. Due to difficulties working in the country, there is a lack of resistance surveys and bacillus characterization. Here, we use genome sequencing of Mycobacteriumtuberculosis clinical isolates to fill this gap. Our results highlight that the bacillus population structure is dominated by lineage 4 strains that harbour an outstanding genetic diversity, higher than in the rest of Africa as a whole. Coalescent analyses demonstrate that strains currently circulating in Liberia were introduced several times beginning in the early year 600 CE until very recently coinciding with migratory movements associated with the civil war and Ebola epidemics. A higher multidrug-resistant (MDR)-TB frequency (23.5 %) than current estimates was obtained together with non-catalogued drug-resistance mutations. Additionally, 39 % of strains were in genomic clusters revealing that ongoing transmission is a major contribution to the TB burden in the country. Our report emphasizes the importance of TB surveillance and control in African countries where bacillus diversity, MDR-TB prevalence and transmission are coalescing to jeopardize TB control programmes.
Assuntos
Mycobacterium tuberculosis/genética , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Variação Genética , Humanos , Libéria/epidemiologia , Epidemiologia Molecular , Mutação , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/transmissãoRESUMO
MOTIVATION: Tuberculosis (TB) remains one of the main causes of death worldwide. The long and cumbersome process of culturing Mycobacterium tuberculosis complex (MTBC) bacteria has encouraged the development of specific molecular tools for detecting the pathogen. Most of these tools aim to become novel TB diagnostics, and big efforts and resources are invested in their development, looking for the endorsement of the main public health agencies. Surprisingly, no study has been conducted where the vast amount of genomic data available is used to identify the best MTBC diagnostic markers. RESULTS: In this work, we used large-scale comparative genomics to identify 40 MTBC-specific loci. We assessed their genetic diversity and physiological features to select 30 that are good targets for diagnostic purposes. Some of these markers could be used to assess the physiological status of the bacilli. Remarkably, none of the most used MTBC markers is in our catalog. Illustrating the translational potential of our work, we develop a specific qPCR assay for quantification and identification of MTBC DNA. Our rational design of targeted molecular assays for TB could be used in many other fields of clinical and basic research. AVAILABILITY AND IMPLEMENTATION: The database of non-tuberculous mycobacteria assemblies can be accessed at: 10.5281/zenodo.3374377. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Biomarcadores , Genômica , HumanosRESUMO
BACKGROUND: Direct whole-genome sequencing of Mycobacterium tuberculosis from clinical specimens will be a major breakthrough in tuberculosis diagnosis and control. To date, direct whole-genome sequencing has never been used in genomic epidemiology, and its accuracy in transmission inference remains unknown. We investigated the technical challenges imposed by direct whole-genome sequencing, and used it to infer transmission clusters and predict drug resistance. METHODS: Using an optimised workflow, we did direct whole-genome sequencing for 37 clinical specimens from 23 tuberculosis patients. Nine sputum samples from nine patients who were infected with different non-tuberculous mycobacteria and culture-negative for tuberculosis were used as controls in the qPCR assays and pre-sequencing runs. Additionally, 780 clinical isolates in the region of Comunidad Valenciana (Spain) were whole-genome sequenced between Jan 1, 2014, and Dec 31, 2016. We analysed the genomic variants to build a tuberculosis transmission network for the region, including the clinical specimens, and to predict drug susceptibility profiles. FINDINGS: After sequencing 37 clinical specimens, 28 specimens (22 [85%] of 26 smear-positive and six [55%] of 11 smear-negative) met the quality criteria for downstream analysis. All 28 clinical specimens clustered with their matching culture isolates, with a median distance of 0 single nucleotide polymorphisms. Of the 28 clinical specimens, 16 (57%) were accurately assigned to ten transmission clusters in the region, and 12 (43%) were unique cases. Transmission inferences and drug-susceptibility predictions from direct whole-genome sequencing data were concordant with sequences from corresponding cultures and phenotypic drug-susceptibility testing. Complete genomic analysis, within a week of specimen receipt, cost 217 per sample (excluding personnel costs). INTERPRETATION: Direct whole-genome sequencing could be used to accurately delineate transmission clusters of tuberculosis and conduct culture-independent surveillance. Compared with conventional approaches, direct whole-genome sequencing allows researchers to do real-time genomic epidemiology and drug resistance surveillance in settings where culture and drug susceptibility testing are not available. FUNDING: European Research Council; Ministerio de Ciencia, Innovación y Universidades (Spanish Government).
RESUMO
BACKGROUND: Whole genome sequencing provides better delineation of transmission clusters in Mycobacterium tuberculosis than traditional methods. However, its ability to reveal individual transmission links within clusters is limited. Here, we used a 2-step approach based on Bayesian transmission reconstruction to (1) identify likely index and missing cases, (2) determine risk factors associated with transmitters, and (3) estimate when transmission happened. METHODS AND FINDINGS: We developed our transmission reconstruction method using genomic and epidemiological data from a population-based study from Valencia Region, Spain. Tuberculosis (TB) incidence during the study period was 8.4 cases per 100,000 people. While the study is ongoing, the sampling frame for this work includes notified TB cases between 1 January 2014 and 31 December 2016. We identified a total of 21 transmission clusters that fulfilled the criteria for analysis. These contained a total of 117 individuals diagnosed with active TB (109 with epidemiological data). Demographic characteristics of the study population were as follows: 80/109 (73%) individuals were Spanish-born, 76/109 (70%) individuals were men, and the mean age was 42.51 years (SD 18.46). We found that 66/109 (61%) TB patients were sputum positive at diagnosis, and 10/109 (9%) were HIV positive. We used the data to reveal individual transmission links, and to identify index cases, missing cases, likely transmitters, and associated transmission risk factors. Our Bayesian inference approach suggests that at least 60% of index cases are likely misidentified by local public health. Our data also suggest that factors associated with likely transmitters are different to those of simply being in a transmission cluster, highlighting the importance of differentiating between these 2 phenomena. Our data suggest that type 2 diabetes mellitus is a risk factor associated with being a transmitter (odds ratio 0.19 [95% CI 0.02-1.10], p < 0.003). Finally, we used the most likely timing for transmission events to study when TB transmission occurred; we identified that 5/14 (35.7%) cases likely transmitted TB well before symptom onset, and these were largely sputum negative at diagnosis. Limited within-cluster diversity does not allow us to extrapolate our findings to the whole TB population in Valencia Region. CONCLUSIONS: In this study, we found that index cases are often misidentified, with downstream consequences for epidemiological investigations because likely transmitters can be missed. Our findings regarding inferred transmission timing suggest that TB transmission can occur before patient symptom onset, suggesting also that TB transmits during sub-clinical disease. This result has direct implications for diagnosing TB and reducing transmission. Overall, we show that a transition to individual-based genomic epidemiology will likely close some of the knowledge gaps in TB transmission and may redirect efforts towards cost-effective contact investigations for improved TB control.
Assuntos
Busca de Comunicante/métodos , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Tuberculose Pulmonar/microbiologia , Tuberculose Pulmonar/transmissão , Sequenciamento Completo do Genoma , Adolescente , Adulto , Idoso , Teorema de Bayes , Biomarcadores , Feminino , Genômica , Soropositividade para HIV/epidemiologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Filogenia , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Espanha/epidemiologia , Resultado do Tratamento , Tuberculose Pulmonar/epidemiologia , Adulto JovemRESUMO
Understanding why some multidrug-resistant tuberculosis cases are not detected by rapid phenotypic and genotypic routine clinical tests is essential to improve diagnostic assays and advance toward personalized tuberculosis treatment. Here, we combine whole-genome sequencing with single-colony phenotyping to identify a multidrug-resistant strain that had infected a patient for 9 years. Our investigation revealed the failure of rapid testing and genome-based prediction tools to identify the multidrug-resistant strain. The false-negative findings were caused by uncommon rifampicin and isoniazid resistance mutations. Although whole-genome sequencing data helped to personalize treatment, the patient developed extensively drug-resistant tuberculosis, highlighting the importance of coupling new diagnostic methods with appropriate treatment regimens.