Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Cereb Blood Flow Metab ; : 271678X241270284, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129187

RESUMO

MicroRNAs, contained in exosomes or freely circulating in the plasma, might play a pivotal role in the infarct-sparing effect exerted by remote limb ischemic postconditioning (RLIP). The aims of the present study were: (1) To evaluate the effect of pure exosomes isolated from plasma of animals subjected to RLIP systemically administered to ischemic rats; (2) To finely dissect exosomes content in terms of miRNAs; (3) To select those regulatory miRNAs specifically expressed in protective exosomes and to identify molecular pathways involved in their neurobeneficial effects. Circulating exosomes were isolated from blood of animals exposed to RLIP and administered to animals exposed to tMCAO by intracerebroventricular, intraperitoneal or intranasal routes. Exosomal miRNA signature was evaluated by microarray and FISH analysis. Plasmatic exosomes isolated from plasma of RLIP rats attenuated cerebral ischemia reperfusion injury and improved neurological functions until 3 days after ischemia induction. Interestingly, miR-702-3p and miR-423-5p seem to be mainly involved in exosome protective action by modulating NOD1 and NLRP3, two key triggers of neuroinflammation and neuronal death. Collectively, the results of the present work demonstrated that plasma-released exosomes after RLIP may transfer a neuroprotective signal to the brain of ischemic animals, thus representing a potentially translatable therapeutic strategy in stroke.

2.
Mol Ther Nucleic Acids ; 35(1): 102131, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38379726

RESUMO

MicroRNA (miRNA), by post-transcriptionally regulating the expression of genes involved in stroke response, represents important effectors in stroke pathophysiology. Recently, the 103/107 miRNA family emerged as a possible therapeutic target in stroke, as it controls the expression of sodium calcium exchanger 1, a plasma membrane transporter that plays a fundamental role in stroke pathophysiology. Although the neuroprotective properties of this and other miRNAs are promising, several pharmacokinetic drawbacks remain to be faced for the development of a translatable therapy based on small RNAs in CNS diseases. In the present study, to overcome these limitations, the anti-miRNA103/107 was encapsulated in specific preparations of lipid nanoparticles (LNPs), and their effectiveness was evaluated both in an in vitro model of hypoxia represented by primary neuronal cortical cultures exposed to oxygen and glucose deprivation followed by reoxygenation, and in an in vivo model of stroke obtained in rats exposed to transient occlusion of the middle cerebral artery. The results of the present study demonstrated that the encapsulation of anti-miRNA103/107 in transferrin-conjugated PEG-stabilized LNPs allowed the blood-brain barrier crossing and significantly reduced brain ischemic damage. The present achievements pave the way for the exploitation of a systemic intravenous miRNA delivery strategy in stroke therapy.

3.
Biochem Pharmacol ; 218: 115869, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37871878

RESUMO

Alzheimer's disease (AD) is the most prevalent form of dementia and is characterized by progressive neurodegeneration leading to severe cognitive, memory, and behavioral impairments. The onset of AD involves a complex interplay among various factors, including age, genetics, chronic inflammation, and impaired energy metabolism. Despite significant efforts, there are currently no effective therapies capable of modifying the course of AD, likely owing to an excessive focus on the amyloid hypothesis and a limited consideration of other intracellular pathways. In the present review, we emphasize the emerging concept of AD as a metabolic disease, where alterations in energy metabolism play a critical role in its development and progression. Notably, glucose metabolism impairment is associated with mitochondrial dysfunction, oxidative stress, Ca2+ dyshomeostasis, and protein misfolding, forming interconnected processes that perpetuate a detrimental self-feeding loop sustaining AD progression. Advanced glycation end products (AGEs), neurotoxic compounds that accumulate in AD, are considered an important consequence of glucose metabolism disruption, and glyceraldehyde (GA), a glycolytic intermediate, is a key contributor to AGEs formation in both neurons and astrocytes. Exploring the impact of GA-induced glucose metabolism impairment opens up exciting possibilities for creating an easy-to-handle in vitro model that recapitulates the early stage of the disease. This model holds great potential for advancing the development of novel therapeutics targeting various intracellular pathways implicated in AD pathogenesis. In conclusion, looking beyond the conventional amyloid hypothesis could lead researchers to discover promising targets for intervention, offering the possibility of addressing the existing medical gaps in AD treatment.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Gliceraldeído/metabolismo , Estresse Oxidativo , Produtos Finais de Glicação Avançada/metabolismo , Glucose/metabolismo , Peptídeos beta-Amiloides/metabolismo
4.
Biology (Basel) ; 12(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37508434

RESUMO

Alzheimer's disease (AD) is a widespread neurodegenerative disorder, affecting a large number of elderly individuals worldwide. Mitochondrial dysfunction, metabolic alterations, and oxidative stress are regarded as cooperating drivers of the progression of AD. In particular, metabolic impairment amplifies the production of reactive oxygen species (ROS), resulting in detrimental alterations to intracellular Ca2+ regulatory processes. The Na+/Ca2+ exchanger (NCX) proteins are key pathophysiological determinants of Ca2+ and Na+ homeostasis, operating at both the plasma membrane and mitochondria levels. Our study aimed to explore the role of NCX1 and NCX3 in retinoic acid (RA) differentiated SH-SY5Y cells treated with glyceraldehyde (GA), to induce impairment of the default glucose metabolism that typically precedes Aß deposition or Tau protein phosphorylation in AD. By using an RNA interference-mediated approach to silence either NCX1 or NCX3 expression, we found that, in GA-treated cells, the knocking-down of NCX3 ameliorated cell viability, increased the intracellular ATP production, and reduced the oxidative damage. Remarkably, NCX3 silencing also prevented the enhancement of Aß and pTau levels and normalized the GA-induced decrease in NCX reverse-mode activity. By contrast, the knocking-down of NCX1 was totally ineffective in preventing GA-induced cytotoxicity except for the increase in ATP synthesis. These findings indicate that NCX3 and NCX1 may differently influence the evolution of AD pathology fostered by glucose metabolic dysfunction, thus providing a potential target for preventing AD.

5.
J Cereb Blood Flow Metab ; 43(7): 1077-1088, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36823998

RESUMO

Multicentre preclinical randomized controlled trials (pRCTs) are a valuable tool to improve experimental stroke research, but are challenging and therefore underused. A common challenge regards the standardization of procedures across centres. We here present the harmonization phase for the quantification of sensorimotor deficits by composite neuroscore, which was the primary outcome of two multicentre pRCTs assessing remote ischemic conditioning in rodent models of ischemic stroke. Ischemic stroke was induced by middle cerebral artery occlusion for 30, 45 or 60 min in mice and 50, 75 or 100 min in rats, allowing sufficient variability. Eleven animals per species were video recorded during neurobehavioural tasks and evaluated with neuroscore by eight independent raters, remotely and blindly. We aimed at reaching an intraclass correlation coefficient (ICC) ≥0.60 as satisfactory interrater agreement. After a first remote training we obtained ICC = 0.50 for mice and ICC = 0.49 for rats. Errors were identified in animal handling and test execution. After a second remote training, we reached the target interrater agreement for mice (ICC = 0.64) and rats (ICC = 0.69). In conclusion, a multi-step, online harmonization phase proved to be feasible, easy to implement and highly effective to align each centre's behavioral evaluations before project's interventional phase.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Camundongos , Animais , Infarto da Artéria Cerebral Média , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Neurobiol Dis ; 178: 106020, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36708960

RESUMO

Lysosomal function and organellar Ca2+ homeostasis become dysfunctional in Stroke causing disturbances in autophagy, the major process for the degradation of abnormal protein aggregates and dysfunctional organelles. However, the role of autophagy in Stroke is controversial since excessive or prolonged autophagy activation exacerbates ischemic brain injury. Of note, glutamate evokes NAADP-dependent Ca2+ release via lysosomal TPC2 channels thus controlling basal autophagy. Considering the massive release of excitotoxins in Stroke, autophagic flux becomes uncontrolled with abnormal formation of autophagosomes causing, in turn, disruption of excitotoxins clearance and neurodegeneration. Here, a fine regulation of autophagy via a proper pharmacological modulation of lysosomal TPC2 channel has been tested in preclinical Stroke models. Primary cortical neurons were subjected to oxygen and glucose deprivation+reoxygenation to reproduce in vitro brain ischemia. Focal brain ischemia was induced in rats by transient middle cerebral artery occlusion (tMCAO). Under these conditions, TPC2 protein expression as well as autophagy and endoplasmic reticulum (ER) stress markers were studied by Western blotting, while TPC2 localization and activity were measured by immunocytochemistry and single-cell video-imaging, respectively. TPC2 protein expression and immunosignal were highly modulated in primary cortical neurons exposed to extreme hypoxic conditions causing dysfunction in organellar Ca2+ homeostasis, ER stress and autophagy-induced cell death. TPC2 knocking down and pharmacological inhibition by Ned-19 during hypoxia induced neuroprotection. The effect of Ned-19 was reversed by the permeable form of TPC2 endogenous agonist, NAADP-AM. Of note, Ned-19 prevented ER stress, as measured by GRP78 (78 kDa glucose-regulated protein) protein reduction and caspase 9 downregulation. In this way Ned-19 restored organellar Ca2+ level. Interestingly, Ned-19 reduced the infarct volume and neurological deficits in rats subjected to tMCAO and prevented hypoxia-induced cell death by blocking autophagic flux. Collectively, the pharmacological inhibition of TPC2 lysosomal channel by Ned-19 protects from focal ischemia by hampering a hyperfunctional autophagy.


Assuntos
Isquemia Encefálica , Acidente Vascular Cerebral , Animais , Ratos , Autofagia , Isquemia Encefálica/metabolismo , Chaperona BiP do Retículo Endoplasmático , Hipóxia/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Lisossomos/metabolismo , Neuroproteção , Neurotoxinas , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo
7.
Biomed Pharmacother ; 154: 113587, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029540

RESUMO

INTRODUCTION AND AIMS: The limited therapeutic options for ischemic stroke treatment render necessary the identification of new strategies. In recent years, it has been shown that natural compounds may represent a valid therapeutic opportunity. Therefore, the present study aimed to evaluate the protective effect of Ruta graveolens water extract (RGWE) in an in vivo experimental model of brain ischemia. METHODS: RGWE effects on ischemic damage and neurological function were evaluated in adult rats subjected to transient occlusion of the Middle Cerebral Artery (tMCAO), receiving two intraperitoneal injections of RGWE, 100 and 300 min after the induction of ischemia. In addition, astroglial and microglial activation was measured as GFAP and IBA-1 expression by immunofluorescence and confocal microscopy analysis. RESULTS: Treatment with RGWE containing 10 mg/kg of Rutin, the major component, ameliorates the ischemic damage and improves neurological performances. Interestingly, the pro-inflammatory states of astrocytes and microglia, respectively detected by using C3 and iNOS markers, were significantly reduced in ipsilateral cortical and striatal areas in ischemic RGWE-treated rats. CONCLUSIONS: RGWE shows a neuroprotective effect on brain infarct volume extent in a transient focal cerebral ischemia model and this effect was paralleled by the prevention of pro-inflammatory astroglial and microglial activation. Collectively, our findings support the idea that natural compounds may represent potential therapeutic opportunities against ischemic stroke.


Assuntos
Isquemia Encefálica , Ataque Isquêmico Transitório , AVC Isquêmico , Fármacos Neuroprotetores , Ruta , Animais , Encéfalo , Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/complicações , Infarto da Artéria Cerebral Média/tratamento farmacológico , Isquemia , Ataque Isquêmico Transitório/complicações , Ataque Isquêmico Transitório/tratamento farmacológico , Ataque Isquêmico Transitório/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Água
8.
Front Neurol ; 12: 736474, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777204

RESUMO

To date, the only effective pharmacological treatment for ischemic stroke is limited to the clinical use of recombinant tissue plasminogen activator (rtPA), although endovascular therapy has also emerged as an effective treatment for acute ischemic stroke. Unfortunately, the benefit of this treatment is limited to a 4.5-h time window. Most importantly, the use of rtPA is contraindicated in the case of hemorrhagic stroke. Therefore, the identification of a reliable biomarker to distinguish hemorrhagic from ischemic stroke could provide several advantages, including an earlier diagnosis, a better treatment, and a faster decision on ruling out hemorrhage so that tPA may be administered earlier. microRNAs (miRNAs) are stable non-coding RNAs crucially involved in the downregulation of gene expression via mRNA cleavage or translational repression. In the present paper, taking advantage of three preclinical animal models of stroke, we compared the miRNA blood levels of animals subjected to permanent or transient middle cerebral artery occlusion (MCAO) or to collagenase-induced hemorrhagic stroke. Preliminarily, we examined the rat miRNome in the brain tissue of ischemic and sham-operated rats; then, we selected those miRNAs whose expression was significantly modulated after stroke to create a list of miRNAs potentially involved in stroke damage. These selected miRNAs were then evaluated at different time intervals in the blood of rats subjected to permanent or transient focal ischemia or to hemorrhagic stroke. We found that four miRNAs-miR-16-5p, miR-101a-3p, miR-218-5p, and miR-27b-3p-were significantly upregulated in the plasma of rats 3 h after permanent MCAO, whereas four other different miRNAs-miR-150-5p, let-7b-5p, let-7c-5p, and miR-181b-5p-were selectively upregulated by collagenase-induced hemorrhagic stroke. Collectively, our study identified some selective miRNAs expressed in the plasma of hemorrhagic rats and pointed out the importance of a precise time point measurement to render more reliable the use of miRNAs as stroke biomarkers.

9.
Cells ; 10(10)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34685498

RESUMO

Located at the level of the endoplasmic reticulum (ER) membrane, stromal interacting molecule 1 (STIM1) undergoes a complex conformational rearrangement after depletion of ER luminal Ca2+. Then, STIM1 translocates into discrete ER-plasma membrane (PM) junctions where it directly interacts with and activates plasma membrane Orai1 channels to refill ER with Ca2+. Furthermore, Ca2+ entry due to Orai1/STIM1 interaction may induce canonical transient receptor potential channel 1 (TRPC1) translocation to the plasma membrane, where it is activated by STIM1. All these events give rise to store-operated calcium entry (SOCE). Besides the main pathway underlying SOCE, which mainly involves Orai1 and TRPC1 activation, STIM1 modulates many other plasma membrane proteins in order to potentiate the influxof Ca2+. Furthermore, it is now clear that STIM1 may inhibit Ca2+ currents mediated by L-type Ca2+ channels. Interestingly, STIM1 also interacts with some intracellular channels and transporters, including nuclear and lysosomal ionic proteins, thus orchestrating organellar Ca2+ homeostasis. STIM1 and its partners/effectors are significantly modulated in diverse acute and chronic neurodegenerative conditions. This highlights the importance of further disclosing their cellular functions as they might represent promising molecular targets for neuroprotection.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Proteínas de Neoplasias/metabolismo , Doenças Neurodegenerativas/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Canais de Cálcio/metabolismo , Humanos , Proteínas de Membrana/metabolismo
10.
J Med Chem ; 64(12): 8333-8353, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34097384

RESUMO

Acid-sensitive ion channels (ASICs) are sodium channels partially permeable to Ca2+ ions, listed among putative targets in central nervous system (CNS) diseases in which a pH modification occurs. We targeted novel compounds able to modulate ASIC1 and to reduce the progression of ischemic brain injury. We rationally designed and synthesized several diminazene-inspired diaryl mono- and bis-guanyl hydrazones. A correlation between their predicted docking affinities for the acidic pocket (AcP site) in chicken ASIC1 and their inhibition of homo- and heteromeric hASIC1 channels in HEK-293 cells was found. Their activity on murine ASIC1a currents and their selectivity vs mASIC2a were assessed in engineered CHO-K1 cells, highlighting a limited isoform selectivity. Neuroprotective effects were confirmed in vitro, on primary rat cortical neurons exposed to oxygen-glucose deprivation followed by reoxygenation, and in vivo, in ischemic mice. Early lead 3b, showing a good selectivity for hASIC1 in human neurons, was neuroprotective against focal ischemia induced in mice.


Assuntos
Bloqueadores do Canal Iônico Sensível a Ácido/uso terapêutico , Canais Iônicos Sensíveis a Ácido/metabolismo , Guanidinas/uso terapêutico , Hidrazonas/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Bloqueadores do Canal Iônico Sensível a Ácido/síntese química , Bloqueadores do Canal Iônico Sensível a Ácido/metabolismo , Canais Iônicos Sensíveis a Ácido/química , Animais , Sítios de Ligação , Células CHO , Galinhas , Cricetulus , Desenho de Fármacos , Guanidinas/síntese química , Guanidinas/metabolismo , Células HEK293 , Humanos , Hidrazonas/síntese química , Hidrazonas/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Estrutura Molecular , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/metabolismo , Ligação Proteica , Ratos , Relação Estrutura-Atividade
11.
Front Pediatr ; 9: 611112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777862

RESUMO

Current tests available to diagnose fetal hypoxia in-utero lack sensitivity thus failing to identify many fetuses at risk. Emerging evidence suggests that microRNAs derived from the placenta circulate in the maternal blood during pregnancy and may be used as non-invasive biomarkers for pregnancy complications. With the intent to identify putative markers of fetal growth restriction (FGR) and new therapeutic druggable targets, we examined, in maternal blood samples, the expression of a group of microRNAs, known to be regulated by hypoxia. The expression of microRNAs was evaluated in maternal plasma samples collected from (1) women carrying a preterm FGR fetus (FGR group) or (2) women with an appropriately grown fetus matched at the same gestational age (Control group). To discriminate between early- and late-onset FGR, the study population was divided into two subgroups according to the gestational age at delivery. Four microRNAs were identified as possible candidates for the diagnosis of FGR: miR-16-5p, miR-103-3p, miR-107-3p, and miR-27b-3p. All four selected miRNAs, measured by RT-PCR, resulted upregulated in FGR blood samples before the 32nd week of gestation. By contrast, miRNA103-3p and miRNA107-3p, analyzed between the 32nd and 37th week of gestation, showed lower expression in the FGR group compared to aged matched controls. Our results showed that measurement of miRNAs in maternal blood may form the basis for a future diagnostic test to determine the degree of fetal hypoxia in FGR, thus allowing the start of appropriate therapeutic interventions to alleviate the burden of this disease.

12.
Theranostics ; 10(26): 12174-12188, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33204336

RESUMO

Remote limb ischemic postconditioning (RLIP) is a well-established neuroprotective strategy able to protect the brain from a previous harmful ischemic insult through a sub-lethal occlusion of the femoral artery. Neural and humoral mechanisms have been proposed as mediators required to transmit the peripheral signal from limb to brain. Moreover, different studies suggest that protection observed at brain level is associated to a general genetic reprogramming involving also microRNAs (miRNAs) intervention. Methods: Brain ischemia was induced in male rats by transient occlusion of the middle cerebral artery (tMCAO), whereas RLIP was achieved by one cycle of temporary occlusion of the ipsilateral femoral artery after tMCAO. The expression profile of 810 miRNAs was evaluated in ischemic brain samples from rats subjected either to tMCAO or to RLIP. Among all analyzed miRNAs, there were four whose expression were upregulated after stroke and returned to basal level after RLIP, thus suggesting a possible involvement in RLIP-induced neuroprotection. These selected miRNAs were intracerebroventricularly infused in rats subjected to remote ischemic postconditioning, and their effect was evaluated in terms of brain damage, neurological deficit scores and expression of putative targets. Results: Twenty-one miRNAs, whose expression was significantly affected by tMCAO and by tMCAO plus RLIP, were selected based on microarray microfluidic profiling. Our data showed that: (1) stroke induced an up-regulation of let-7a and miR-143 (2) these two miRNAs were involved in the protective effects induced by RLIP and (3) HIF1-α contributes to their protective effect. Indeed, their expression was reduced after RLIP and the exogenous intracerebroventricularly infusion of let-7a and miR-143 mimics prevented neuroprotection and HIF1-α overexpression induced by RLIP. Conclusions: Prevention of cerebral let-7a and miR-143 overexpression induced by brain ischemia emerges as new potential strategy in stroke intervention.


Assuntos
Pós-Condicionamento Isquêmico/métodos , AVC Isquêmico/reabilitação , MicroRNAs/metabolismo , Reabilitação do Acidente Vascular Cerebral/métodos , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Infusões Intraventriculares , AVC Isquêmico/genética , AVC Isquêmico/patologia , Masculino , MicroRNAs/agonistas , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Técnicas Estereotáxicas , Regulação para Cima
13.
Cell Calcium ; 87: 102195, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32240869

RESUMO

The small ubiquitin-like modifier (SUMO) conjugation (or SUMOylation) is a post-translational protein modification mechanism activated by different stress conditions that has been recently investigated in experimental models of cerebral ischemia. The expression of SUMOylation enzymes and substrates is not restricted to the nucleus, since they are present also in the cytoplasm and on plasma membrane and are involved in several physiological and pathological conditions. In the last decades, convincing evidence have supported the idea that the increased levels of SUMOylated proteins may induce tolerance to ischemic stress. In particular, it has been established that protein SUMOylation may confer neuroprotection during ischemic preconditioning. Considering the increasing evidence that SUMO can modify stability and expression of ion channels and transporters and the relevance of controlling ionic homeostasis in ischemic conditions, the present review will resume the main aspects of SUMO pathways related to the key molecules involved in maintenance of ionic homeostasis during cerebral ischemia and ischemic preconditioning, with a particular focus on the on Na+/Ca2+ exchangers.


Assuntos
Isquemia Encefálica/metabolismo , Precondicionamento Isquêmico , Trocador de Sódio e Cálcio/metabolismo , Sumoilação , Animais , Humanos , Canais Iônicos/metabolismo , Modelos Biológicos
14.
Mol Neurobiol ; 57(5): 2358-2376, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32048166

RESUMO

The Na+/Ca2+ exchanger 1 (NCX1) participates in the maintenance of neuronal Na+ and Ca2+ homeostasis, and it is highly expressed at synapse level of some brain areas involved in learning and memory processes, including the hippocampus, cortex, and amygdala. Furthermore, NCX1 increases Akt1 phosphorylation and enhances glutamate-mediated Ca2+ influx during depolarization in hippocampal and cortical neurons, two processes involved in learning and memory mechanisms. We investigated whether the modulation of NCX1 expression/activity might influence learning and memory processes. To this aim, we used a knock-in mouse overexpressing NCX1 in hippocampal, cortical, and amygdala neurons (ncx1.4over) and a newly synthesized selective NCX1 stimulating compound, named CN-PYB2. Both ncx1.4over and CN-PYB2-treated mice showed an amelioration in spatial learning performance in Barnes maze task, and in context-dependent memory consolidation after trace fear conditioning. On the other hand, these mice showed no improvement in novel object recognition task which is mainly dependent on non-spatial memory and displayed an increase in the active phosphorylated CaMKIIα levels in the hippocampus. Interestingly, both of these mice showed an increased level of context-dependent anxiety.Altogether, these results demonstrate that neuronal NCX1 participates in spatial-dependent hippocampal learning and memory processes.


Assuntos
Hipocampo/fisiologia , Trocador de Sódio e Cálcio/biossíntese , Aprendizagem Espacial/fisiologia , Memória Espacial/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Linhagem Celular , Cricetinae , Técnicas de Introdução de Genes , Células HEK293 , Hipocampo/metabolismo , Humanos , Transporte de Íons/efeitos dos fármacos , Masculino , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Técnicas de Patch-Clamp , Fosforilação , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Proteínas Recombinantes/metabolismo , Sódio/metabolismo , Trocador de Sódio e Cálcio/agonistas , Trocador de Sódio e Cálcio/genética , Aprendizagem Espacial/efeitos dos fármacos , Memória Espacial/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
15.
BMJ Open Sci ; 4(1): e100063, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35047692

RESUMO

INTRODUCTION: Multicentre preclinical randomised controlled trials (pRCT) are emerging as a necessary step to confirm efficacy and improve translation into the clinic. The aim of this project is to perform two multicentre pRCTs (one in rats and one in mice) to investigate the efficacy of remote ischaemic conditioning (RIC) in an experimental model of severe ischaemic stroke. METHODS AND ANALYSIS: Seven research laboratories within the Italian Stroke Organization (ISO) Basic Science network will participate in the study. Transient endovascular occlusion of the proximal right middle cerebral artery will be performed in two species (rats and mice) and in both sexes. Animals will be randomised to receive RIC by transient surgical occlusion of the right femoral artery, or sham surgery, after reperfusion. Blinded outcome assessment will be performed for dichotomised functional neuroscore (primary endpoint) and infarct volume (secondary endpoint) at 48 hours. A sample size of 80 animals per species will yield 82% power to detect a significant difference of 30% in the primary outcome in both pRCTs. Analyses will be performed in a blind status and according to an intention-to-treat paradigm. The results of this study will provide robust, translationally oriented, high-quality evidence on the efficacy of RIC in multiple species of rodents with large ischaemic stroke. ETHICS AND DISSEMINATION: This is approved by the Animal Welfare Regulatory Body of the University of Milano Bicocca, under project license from the Italian Ministry of Health. Trial results will be subject to publication according to the definition of the outcome presented in this protocol. TRIAL REGISTRATION NUMBER: PCTE0000177.

16.
Mol Ther Nucleic Acids ; 18: 1063-1071, 2019 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-31791013

RESUMO

It has been demonstrated that the K+-dependent Na+/Ca2+ exchanger, NCKX2, is a new promising stroke neuroprotective target. However, because no pharmacological activator of NCKX2 is still available, microRNA (miRNA) may represent an alternative method to modulate NCKX2 expression. In particular, by bioinformatics analysis, miR-223-5p emerged as a possible modulator of NCKX2 expression. In the light of these premises, the aims of the present study were: (1) to evaluate miR-223-5p and NCKX2 expression in the temporoparietal cortex and striatum of rats subjected to transient middle cerebral artery occlusion; (2) to evaluate whether miR-223-5p targets the 3' UTR of the NCKX2 transcript; and (3) to evaluate the effect of miR-223-5p modulation on brain ischemic volume and neurological deficits. Our results showed that miR-223-5p expression increased in a time-dependent manner in the striatum of ischemic rats in parallel with NCKX2 downregulation, and that the transfection of cortical neurons with miR-223-5p induced a reduction of NCKX2 expression. Moreover, a luciferase assay showed that miR-223-5p specifically interacts with the NCKX2 3' UTR subregion (+7037 to +8697), thus repressing NCKX2 translation. More interestingly, intracerebroventricular infusion of anti-miR-223-5p prevented NCKX2 downregulation after ischemia, thus promoting neuroprotection. The present findings support the idea that blocking miR-223-5p by antimiRNA is a reasonable strategy to reduce the neurodetrimental effect induced by NCKX2 downregulation during brain ischemia.

17.
Stroke ; 50(5): 1240-1249, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31009360

RESUMO

Background and Purpose- Disturbance of endoplasmic reticulum (ER) Ca2+ homeostasis causes neuronal cell injury in stroke. By contrast, ischemic preconditioning (IPC)-a brief sublethal ischemic episode affording tolerance to a subsequent ischemic insult-restores ER Ca2+ homeostasis. Under physiological conditions, ER calcium content is continuously refilled by the interaction between the ER-located Ca2+ sensor STIM (stromal interacting molecule) 1 and the plasma membrane channel ORAI1 (a structural component of the CRAC calcium channel)-2 key mediators of the store-operated calcium entry (SOCE) mechanism. However, the role played by ORAI1 and STIM1 in stroke and in IPC-induced neuroprotection during stroke remains unknown. Therefore, we explored whether ORAI1 and STIM1 might be involved in stroke pathogenesis and in IPC-induced neuroprotection. Methods- Primary cortical neurons were subjected to oxygen and glucose deprivation+reoxygenation to reproduce in vitro brain ischemia. Focal brain ischemia and IPC were induced in rats by transient middle cerebral artery occlusion. Expression of ORAI1 and STIM1 transcripts and proteins and their immunosignals were detected by qRT-PCR, Western blot, and immunocytochemistry, respectively. SOCE and Ca2+ release-activated Ca2+ currents (ICRAC) were measured by Fura-2 AM video imaging and patch-clamp electrophysiology in whole-cell configuration, respectively. Results- STIM1 and ORAI1 protein expression and immunosignals decreased in the ipsilesional temporoparietal cortex of rats subjected to transient middle cerebral artery occlusion followed by reperfusion. Analogously, in primary hypoxic cortical neurons, STIM1 and ORAI1 transcript and protein levels decreased concurrently with SOCE and Ca2+ release-activated Ca2+currents. By contrast, IPC induced SOCE and Ca2+ release-activated Ca2+current upregulation, thereby preventing STIM1 and ORAI1 downregulation induced by oxygen and glucose deprivation+reoxygenation. Silencing of STIM1 or ORAI1 prevented IPC-induced tolerance and caused ER stress, as measured by GRP78 (78-kDa glucose regulated protein) and caspase-3 upregulation. Conclusions- ORAI1 and STIM1, which participate in SOCE, take part in stroke pathophysiology and play an important role in IPC-induced neuroprotection.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Precondicionamento Isquêmico/métodos , Proteínas de Membrana/metabolismo , Neuroproteção/fisiologia , Proteína ORAI1/metabolismo , Acidente Vascular Cerebral/prevenção & controle , Molécula 1 de Interação Estromal/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Ratos , Ratos Wistar , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
18.
J Neurosci Methods ; 310: 63-74, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30287283

RESUMO

BACKGROUND: In the last decades the need to find new neuroprotective targets has addressed the researchers to investigate the endogenous molecular mechanisms that brain activates when exposed to a conditioning stimulus. Indeed, conditioning is an adaptive biological process activated by those interventions able to confer resistance to a deleterious brain event through the exposure to a sub-threshold insult. Specifically, preconditioning and postconditioning are realized when the conditioning stimulus is applied before or after, respectively, the harmul ischemia. AIMS AND RESULTS: The present review will describe the most common methods to induce brain conditioning, with particular regards to surgical, physical exercise, temperature-induced and pharmacological approaches. It has been well recognized that when the subliminal stimulus is delivered after the ischemic insult, the achieved neuroprotection is comparable to that observed in models of ischemic preconditioning. In addition, subjecting the brain to both preconditioning as well as postconditioning did not cause greater protection than each treatment alone. CONCLUSIONS: The last decades have provided fascinating insights into the mechanisms and potential application of strategies to induce brain conditioning. Since the identification of intrinsic cell-survival pathways should provide more direct opportunities for translational neuroprotection trials, an accurate examination of the different models of preconditioning and postconditioning is mandatory before starting any new project.


Assuntos
Encéfalo/irrigação sanguínea , Precondicionamento Isquêmico/métodos , Animais , Humanos
19.
Front Neurosci ; 12: 510, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30131665

RESUMO

Amyotrophic lateral sclerosis (ALS) is one of the most threatening neurodegenerative disease since it causes muscular paralysis for the loss of Motor Neurons in the spinal cord, brainstem and motor cortex. Up until now, no effective pharmacological treatment is available. Two forms of ALS have been described so far: 90% of the cases presents the sporadic form (sALS) whereas the remaining 10% of the cases displays the familiar form (fALS). Approximately 20% of fALS is associated with inherited mutations in the Cu, Zn-superoxide dismutase 1 (SOD1) gene. In the last decade, ionic homeostasis dysregulation has been proposed as the main trigger of the pathological cascade that brings to motor-neurons loss. In the light of these premises, the present review will analyze the involvement in ALS pathophysiology of the most well studied metal ions, i.e., calcium, sodium, iron, copper and zinc, with particular focus to the role of ionic channels and transporters able to contribute in the regulation of ionic homeostasis, in order to propose new putative molecular targets for future therapeutic strategies to ameliorate the progression of this devastating neurodegenerative disease.

20.
Neuropharmacology ; 135: 180-191, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29551690

RESUMO

Hypoxic-ischemic encephalopathy (HI) accounts for the majority of developmental, motor and cognitive deficits in children, leading to life-long neurological impairments. Since the plasmamembrane sodium/calcium exchanger (NCX) plays a fundamental role in maintaining ionic homeostasis during adult brain ischemia, in the present work we aimed to demonstrate (1)the involvement of NCX in the pathophysiology of neonatal HI and (2)a possible NCX-based pharmacological intervention. HI was induced in neonatal mice at postnatal day 7(P7) by unilateral cut of the right common carotid artery, followed by 60 min exposure to 8%O2. Expression profiles of NCX isoforms from embryos stage to adulthood was evaluated in the hippocampus of hypoxic-ischemic and control mice. To assess the effect of NCX pharmacological stimulation, brain infarct volume was evaluated in brain sections, obtained at several time intervals after systemic administration of the newly synthesized NCX activator neurounina. Moreover, the long term effect of NCX activation was evaluated in adult mice (P60) subjected to neonatal HI and daily treated with neurounina for three weeks. Hypoxic-ischemic insult induced a reduction of NCX1 and NCX3 expression starting from day 7 until day 60. Notably, 8 weeks after HI induction in P7 mice, NCX pharmacological stimulation not only reduced infarct volume but improved also motor behaviour, spatial and visual memory. The present study highlights the significant role of NCX in the evolution of neonatal brain injury and in the learning and memory processes that are impaired in mice injured in the neonatal period.


Assuntos
Benzodiazepinonas/farmacologia , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Hipóxia-Isquemia Encefálica/prevenção & controle , Pirrolidinas/farmacologia , Trocador de Sódio e Cálcio/metabolismo , Animais , Animais Recém-Nascidos , Comportamento Animal/efeitos dos fármacos , Benzodiazepinonas/uso terapêutico , Encéfalo/patologia , Feminino , Hipocampo/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Masculino , Camundongos , Isoformas de Proteínas , Pirrolidinas/uso terapêutico , Trocador de Sódio e Cálcio/biossíntese , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA