Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
2.
Toxics ; 11(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37755759

RESUMO

In the last decade, e-cigarette usage has increased, with an estimated 82 million e-cigarette users globally. This is, in part, due to the common opinion that they are "healthier" than tobacco cigarettes or simply "water vapour". Third-hand e-vapour exposure is the chemical residue left behind from e-cigarette aerosols, which is of concern due to its invisible nature, especially among young children. However, there is limited information surrounding third-hand e-vapour exposure. This study aimed to investigate the pulmonary effects of sub-chronic third-hand e-vapour exposure in a murine model. BALB/c mice (4 weeks of age) were exposed to a towel containing nicotine free (0 mg) e-vapour, nicotine (18 mg) e-vapour, or no e-vapour (sham) and replaced daily for 4 weeks. At the endpoint, lung function was assessed, and bronchoalveolar lavage fluid and lungs were collected to measure inflammation and fibrosis. Mice exposed to third-hand e-vapour without nicotine had alveolar enlargement compared to sham exposed controls. Mice exposed to third-hand e-vapour with nicotine had reduced bronchial responsiveness to provocation, increased epithelial thickening in large airways, increased epithelial layers in small airways, alveolar enlargement, and increased small airway collagen deposition, compared to sham exposed controls. In conclusion, our study shows that third-hand e-vapour exposure, particularly in the presence of nicotine, negatively affects the lung health of mice and highlights the need for greater public awareness surrounding the dangers of third-hand exposure to e-cigarette vapour.

3.
Adv Mater ; 34(47): e2205614, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36120809

RESUMO

Native arteries contain a distinctive intima-media composed of organized elastin and an adventitia containing mature collagen fibrils. In contrast, implanted biodegradable small-diameter vascular grafts do not present spatially regenerated, organized elastin. The elastin-containing structures within the intima-media region encompass the elastic lamellae (EL) and internal elastic lamina (IEL) and are crucial for normal arterial function. Here, the development of a novel electrospun small-diameter vascular graft that facilitates de novo formation of a structurally appropriate elastin-containing intima-media region following implantation is described. The graft comprises a non-porous microstructure characterized by tropoelastin fibers that are embedded in a PGS matrix. After implantation in mouse abdominal aorta, the graft develops distinct cell and extracellular matrix profiles that approximate the native adventitia and intima-media by 8 weeks. Within the newly formed intima-media region there are circumferentially aligned smooth muscle cell layers that alternate with multiple EL similar to that found in the arterial wall. By 8 months, the developed adventitia region contains mature collagen fibrils and the neoartery presents a distinct IEL with thickness comparable to that in mouse abdominal aorta. It is proposed that this new class of material can generate the critically required, organized elastin needed for arterial regeneration.


Assuntos
Prótese Vascular , Elastina , Camundongos , Animais , Miócitos de Músculo Liso , Artérias , Colágeno
4.
Curr Opin Biotechnol ; 74: 15-20, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34781101

RESUMO

Elastic fibers are an essential part of the pulmonary extracellular matrix (ECM). Intact elastin is required for normal function and its damage contributes profoundly to the etiology and pathology of lung disease. This highlights the need for novel lung-specific imaging methodology that enables high-resolution 3D visualization of the ECM. We consider elastin's involvement in chronic respiratory disease and examine recent methods for imaging and modeling of the lung in the context of advances in lung tissue engineering for research and clinical application.


Assuntos
Elastina , Matriz Extracelular , Pulmão/diagnóstico por imagem , Engenharia Tecidual
6.
Nutrients ; 11(7)2019 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-31330878

RESUMO

Maternal smoking leads to glucose and lipid metabolic disorders and hepatic damage in the offspring, potentially due to mitochondrial oxidative stress. Mitoquinone mesylate (MitoQ) is a mitochondrial targeted antioxidant with high bioavailability. This study aimed to examine the impact of maternal cigarette smoke exposure (SE) on offspring's metabolic profile and hepatic damage, and whether maternal MitoQ supplementation during gestation can affect these changes. Female Balb/c mice (eight weeks) were either exposed to air or SE for six weeks prior to mating and throughout gestation and lactation. A subset of the SE dams were supplied with MitoQ in the drinking water (500 µmol/L) during gestation and lactation. Intraperitoneal glucose tolerance test was performed in the male offspring at 12 weeks and the livers and plasma were collected at 13 weeks. Maternal SE induced glucose intolerance, hepatic steatosis, mitochondrial oxidative stress and related damage in the adult offspring. Maternal MitoQ supplementation reduced hepatic mitochondrial oxidative stress and improved markers of mitophagy and mitochondrial biogenesis. This may restore hepatic mitochondrial health and was associated with an amelioration of glucose intolerance, hepatic steatosis and pathological changes induced by maternal SE. MitoQ supplementation may potentially prevent metabolic dysfunction and hepatic pathology induced by intrauterine SE.


Assuntos
Fígado Gorduroso/induzido quimicamente , Exposição Materna , Síndrome Metabólica/induzido quimicamente , Compostos Organofosforados/farmacologia , Poluição por Fumaça de Tabaco/efeitos adversos , Ubiquinona/análogos & derivados , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Feminino , Lactação , Lipidômica , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias Hepáticas/fisiologia , Compostos Organofosforados/administração & dosagem , Estresse Oxidativo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ubiquinona/administração & dosagem , Ubiquinona/farmacologia
7.
Matrix Biol ; 84: 4-16, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31301399

RESUMO

Elastic fibers are an essential component of the extracellular matrix where they provide structural integrity and elastic recoil in a number of important tissues. A major constituent of these fibers is elastin, an insoluble metabolically stable polymer formed via extensive crosslinking of the monomeric precursor tropoelastin. Research over the past few decades has shown that tropoelastin possesses unique structural features that differ from both intrinsically disordered and globular proteins. This review details the advances in our understanding of tropoelastin's structural properties and illustrates how these dictate its biological function.


Assuntos
Elastina/química , Elastina/metabolismo , Matriz Extracelular/metabolismo , Animais , Matriz Extracelular/química , Humanos , Domínios Proteicos , Tropoelastina/química , Tropoelastina/metabolismo
8.
Clin Sci (Lond) ; 132(14): 1615-1627, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30006481

RESUMO

Increased airway smooth muscle (ASM) mass is observed in chronic obstructive pulmonary disease (COPD), which is correlated with disease severity and negatively affects lung function in these patients. Thus, there is clear unmet clinical need for finding new therapies which can target airway remodeling and disease progression in COPD. Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) activated by various stress stimuli, including reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, and lipopolysaccharide (LPS) and is known to regulate cell proliferation. ASM cells from COPD patients are hyperproliferative to mitogens in vitro However, the role of ASK1 in ASM growth is not established. Here, we aim to determine the effects of ASK1 inhibition on ASM growth and pro-mitogenic signaling using ASM cells from COPD patients. We found greater expression of ASK1 in ASM bundles of COPD lung when compared with non-COPD. Pre-treatment of ASM cells with highly selective ASK1 inhibitor, TC ASK 10 resulted in a dose-dependent reduction in mitogen (FBS, PDGF, and EGF; 72 h)-induced ASM growth as measured by CyQUANT assay. Further, molecular targetting of ASK1 using siRNA in ASM cells prevented mitogen-induced cell growth. In addition, to anti-mitogenic potential, ASK1 inhibitor also prevented TGFß1-induced migration of ASM cells in vitro Immunoblotting revealed that anti-mitogenic effects are mediated by C-Jun N-terminal kinase (JNK) and p38MAP kinase-signaling pathways as evident by reduced phosphorylation of downstream effectors JNK1/2 and p38MAP kinases, respectively, with no effect on extracellular signal-regulated kinase (ERK) 1/2 (ERK1/2). Collectively, these findings establish the anti-mitogenic effect of ASK1 inhibition and identify a novel pathway that can be targetted to reduce or prevent excessive ASM mass in COPD.


Assuntos
Movimento Celular/genética , Proliferação de Células/genética , Pulmão/metabolismo , MAP Quinase Quinase Quinase 5/genética , Miócitos de Músculo Liso/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Inibidores Enzimáticos/farmacologia , Humanos , Pulmão/citologia , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , MAP Quinase Quinase Quinase 5/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/genética , Mitógenos/farmacologia , Músculo Liso/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Interferência de RNA , Fator de Crescimento Transformador beta1/farmacologia
9.
J Biomol Screen ; 19(3): 354-68, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24019255

RESUMO

The actin cytoskeleton plays an important role in most, if not all, processes necessary for cell survival. Given the fundamental role that the actin cytoskeleton plays in the progression of cancer, it is an ideal target for chemotherapy. Although it is possible to image the actin cytoskeleton in a high-throughput manner, there is currently no validated method to quantify changes in the cytoskeleton in the same capacity, which makes research into its organization and the development of anticytoskeletal drugs difficult. We have validated the use of a linear feature detection algorithm, allowing us to measure changes in actin filament organization. Its ability to quantify changes associated with cytoskeletal disruption will make it a valuable tool in the development of compounds that target the cytoskeleton in cancer. Our results show that this algorithm can quantify cytoskeletal changes in a cell-based system after addition of both well-established and novel anticytoskeletal agents using either fluorescence microscopy or a high-content imaging approach. This novel method gives us the potential to screen compounds in a high-throughput manner for cancer and other diseases in which the cytoskeleton plays a key role.


Assuntos
Citoesqueleto de Actina/metabolismo , Algoritmos , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios de Triagem em Larga Escala , Imagem Molecular/métodos , Actinas/antagonistas & inibidores , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência , Reprodutibilidade dos Testes , Software
10.
J Muscle Res Cell Motil ; 34(3-4): 261-74, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23904035

RESUMO

The actin cytoskeleton plays a central role in many essential cellular processes. Its involvement requires actin filaments to form multiple populations with different structural and therefore functional properties in specific subcellular locations. This diversity is facilitated through the interaction between actin and a number of actin binding proteins. One family of proteins, the tropomyosins, are absolutely essential in regulating actin's ability to form such diverse structures. In this review we integrate studies from different organisms and cell types in an attempt to provide a unifying view of tropomyosin dependent regulation of the actin cytoskeleton.


Assuntos
Citoesqueleto de Actina/fisiologia , Actinas/fisiologia , Citoesqueleto/fisiologia , Tropomiosina/fisiologia , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Animais , Citoesqueleto/química , Citoesqueleto/metabolismo , Humanos , Tropomiosina/química , Tropomiosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA