Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(6): e1012351, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38924030

RESUMO

AXL+ Siglec-6+ dendritic cells (ASDC) are novel myeloid DCs which can be subdivided into CD11c+ and CD123+ expressing subsets. We showed for the first time that these two ASDC subsets are present in inflamed human anogenital tissues where HIV transmission occurs. Their presence in inflamed tissues was supported by single cell RNA analysis of public databases of such tissues including psoriasis diseased skin and colorectal cancer. Almost all previous studies have examined ASDCs as a combined population. Our data revealed that the two ASDC subsets differ markedly in their functions when compared with each other and to pDCs. Relative to their cell functions, both subsets of blood ASDCs but not pDCs expressed co-stimulatory and maturation markers which were more prevalent on CD11c+ ASDCs, thus inducing more T cell proliferation and activation than their CD123+ counterparts. There was also a significant polarisation of naïve T cells by both ASDC subsets toward Th2, Th9, Th22, Th17 and Treg but less toward a Th1 phenotype. Furthermore, we investigated the expression of chemokine receptors that facilitate ASDCs and pDCs migration from blood to inflamed tissues, their HIV binding receptors, and their interactions with HIV and CD4 T cells. For HIV infection, within 2 hours of HIV exposure, CD11c+ ASDCs showed a trend in more viral transfer to T cells than CD123+ ASDCs and pDCs for first phase transfer. However, for second phase transfer, CD123+ ASDCs showed a trend in transferring more HIV than CD11c+ ASDCs and there was no viral transfer from pDCs. As anogenital inflammation is a prerequisite for HIV transmission, strategies to inhibit ASDC recruitment into inflamed tissues and their ability to transmit HIV to CD4 T cells should be considered.


Assuntos
Células Dendríticas , Infecções por HIV , Humanos , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Receptor Tirosina Quinase Axl , Masculino , HIV-1/imunologia , Feminino , Células Mieloides/metabolismo , Células Mieloides/imunologia , Pessoa de Meia-Idade , Adulto
2.
Pain ; 165(4): 753-771, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37975868

RESUMO

ABSTRACT: The past 20 years have seen a dramatic shift in our understanding of the role of the immune system in initiating and maintaining pain. Myeloid cells, including macrophages, dendritic cells, Langerhans cells, and mast cells, are increasingly implicated in bidirectional interactions with nerve fibres in rodent pain models. However, our understanding of the human setting is still poor. High-dimensional functional analyses have substantially changed myeloid cell classifications, with recently described subsets such as epidermal dendritic cells and DC3s unveiling new insight into how myeloid cells interact with nerve fibres. However, it is unclear whether this new understanding has informed the study of human chronic pain. In this article, we perform a scoping review investigating neuroimmune interactions between myeloid cells and peripheral nerve fibres in human chronic pain conditions. We found 37 papers from multiple pain states addressing this aim in skin, cornea, peripheral nerve, endometrium, and tumour, with macrophages, Langerhans cells, and mast cells the most investigated. The directionality of results between studies was inconsistent, although the clearest pattern was an increase in macrophage frequency across conditions, phases, and tissues. Myeloid cell definitions were often outdated and lacked correspondence with the stated cell types of interest; overreliance on morphology and traditional structural markers gave limited insight into the functional characteristics of investigated cells. We therefore critically reappraise the existing literature considering contemporary myeloid cell biology and advocate for the application of established and emerging high-dimensional proteomic and transcriptomic single-cell technologies to clarify the role of specific neuroimmune interactions in chronic pain.


Assuntos
Dor Crônica , Feminino , Humanos , Dor Crônica/metabolismo , Proteômica , Macrófagos , Células Mieloides/metabolismo , Comunicação Celular
4.
Cell Rep ; 40(12): 111385, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130503

RESUMO

The initial immune response to HIV determines transmission. However, due to technical limitations we still do not have a comparative map of early mucosal transmission events. By combining RNAscope, cyclic immunofluorescence, and image analysis tools, we quantify HIV transmission signatures in intact human colorectal explants within 2 h of topical exposure. We map HIV enrichment to mucosal dendritic cells (DCs) and submucosal macrophages, but not CD4+ T cells, the primary targets of downstream infection. HIV+ DCs accumulate near and within lymphoid aggregates, which act as early sanctuaries of high viral titers while facilitating HIV passage to the submucosa. Finally, HIV entry induces recruitment and clustering of target cells, facilitating DC- and macrophage-mediated HIV transfer and enhanced infection of CD4+ T cells. These data demonstrate a rapid response to HIV structured to maximize the likelihood of mucosal infection and provide a framework for in situ studies of host-pathogen interactions and immune-mediated pathologies.


Assuntos
Neoplasias Colorretais , Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos , Neoplasias Colorretais/patologia , Células Dendríticas , Interações Hospedeiro-Patógeno , Humanos
5.
Nat Commun ; 13(1): 2774, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589689

RESUMO

Respiratory tract infection with SARS-CoV-2 results in varying immunopathology underlying COVID-19. We examine cellular, humoral and cytokine responses covering 382 immune components in longitudinal blood and respiratory samples from hospitalized COVID-19 patients. SARS-CoV-2-specific IgM, IgG, IgA are detected in respiratory tract and blood, however, receptor-binding domain (RBD)-specific IgM and IgG seroconversion is enhanced in respiratory specimens. SARS-CoV-2 neutralization activity in respiratory samples correlates with RBD-specific IgM and IgG levels. Cytokines/chemokines vary between respiratory samples and plasma, indicating that inflammation should be assessed in respiratory specimens to understand immunopathology. IFN-α2 and IL-12p70 in endotracheal aspirate and neutralization in sputum negatively correlate with duration of hospital stay. Diverse immune subsets are detected in respiratory samples, dominated by neutrophils. Importantly, dexamethasone treatment does not affect humoral responses in blood of COVID-19 patients. Our study unveils differential immune responses between respiratory samples and blood, and shows how drug therapy affects immune responses during COVID-19.


Assuntos
COVID-19 , Anticorpos Antivirais , Humanos , Imunidade , Imunoglobulina G , Imunoglobulina M , Sistema Respiratório , SARS-CoV-2 , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus
6.
Mucosal Immunol ; 15(4): 542-550, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35173293

RESUMO

In tissue, mononuclear phagocytes (MNP) are comprised of Langerhans cells, dendritic cells, macrophages and monocyte-derived cells. They are the first immune cells to encounter HIV during transmission and transmit the virus to CD4 T cells as a consequence of their antigen presenting cell function. To understand the role these cells play in transmission, their phenotypic and functional characterisation is important. With advancements in high parameter single cell technologies, new MNPs subsets are continuously being discovered and their definition and classification is in a state of flux. This has important implications for our knowledge of HIV transmission, which requires a deeper understanding to design effective vaccines and better blocking strategies. Here we review the historical research of the role MNPs play in HIV transmission up to the present day and revaluate these studies in the context of our most recent understandings of the MNP system.


Assuntos
Infecções por HIV , Macrófagos , Linfócitos T CD4-Positivos , Células Dendríticas , Humanos , Células de Langerhans , Sistema Fagocitário Mononuclear , Fagócitos
7.
Front Immunol ; 12: 727952, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566985

RESUMO

The human intestine contains numerous mononuclear phagocytes (MNP), including subsets of conventional dendritic cells (cDC), macrophages (Mf) and monocytes, each playing their own unique role within the intestinal immune system and homeostasis. The ability to isolate and interrogate MNPs from fresh human tissue is crucial if we are to understand the role of these cells in homeostasis, disease settings and immunotherapies. However, liberating these cells from tissue is problematic as many of the key surface identification markers they express are susceptible to enzymatic cleavage and they are highly susceptible to cell death. In addition, the extraction process triggers immunological activation/maturation which alters their functional phenotype. Identifying the evolving, complex and highly heterogenous repertoire of MNPs by flow cytometry therefore requires careful selection of digestive enzyme blends that liberate viable cells and preserve recognition epitopes involving careful selection of antibody clones to enable analysis and sorting for functional assays. Here we describe a method for the anatomical separation of mucosa and submucosa as well as isolating lymphoid follicles from human jejunum, ileum and colon. We also describe in detail the optimised enzyme digestion methods needed to acquire functionally immature and biologically functional intestinal MNPs. A comprehensive list of screened antibody clones is also presented which allows for the development of high parameter flow cytometry panels to discriminate all currently identified human tissue MNP subsets including pDCs, cDC1, cDC2 (langerin+ and langerin-), newly described DC3, monocytes, Mf1, Mf2, Mf3 and Mf4. We also present a novel method to account for autofluorescent signal from tissue macrophages. Finally, we demonstrate that these methods can successfully be used to sort functional, immature intestinal DCs that can be used for functional assays such as cytokine production assays.


Assuntos
Separação Celular , Colo/citologia , Citometria de Fluxo , Íleo/citologia , Mucosa Intestinal/citologia , Jejuno/citologia , Fagócitos/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Fagócitos/imunologia , Fenótipo
8.
Nat Commun ; 12(1): 2147, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846309

RESUMO

Tissue mononuclear phagocytes (MNP) are specialised in pathogen detection and antigen presentation. As such they deliver HIV to its primary target cells; CD4 T cells. Most MNP HIV transmission studies have focused on epithelial MNPs. However, as mucosal trauma and inflammation are now known to be strongly associated with HIV transmission, here we examine the role of sub-epithelial MNPs which are present in a diverse array of subsets. We show that HIV can penetrate the epithelial surface to interact with sub-epithelial resident MNPs in anogenital explants and define the full array of subsets that are present in the human anogenital and colorectal tissues that HIV may encounter during sexual transmission. In doing so we identify two subsets that preferentially take up HIV, become infected and transmit the virus to CD4 T cells; CD14+CD1c+ monocyte-derived dendritic cells and langerin-expressing conventional dendritic cells 2 (cDC2).


Assuntos
Canal Anal/citologia , Antígenos CD/metabolismo , Células Dendríticas/metabolismo , Genitália/citologia , HIV-1/fisiologia , Lectinas Tipo C/metabolismo , Lectinas de Ligação a Manose/metabolismo , Monócitos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Forma Celular , Colagenases/metabolismo , Derme/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/virologia , Humanos , Receptores de Lipopolissacarídeos/metabolismo , Mucosa/metabolismo , Fagócitos/metabolismo , Fenótipo , Receptores CCR5/metabolismo , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA