Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38539747

RESUMO

The research groups in computer vision, graphics, and machine learning have dedicated a substantial amount of attention to the areas of 3D object reconstruction, augmentation, and registration. Deep learning is the predominant method used in artificial intelligence for addressing computer vision challenges. However, deep learning on three-dimensional data presents distinct obstacles and is now in its nascent phase. There have been significant advancements in deep learning specifically for three-dimensional data, offering a range of ways to address these issues. This study offers a comprehensive examination of the latest advancements in deep learning methodologies. We examine many benchmark models for the tasks of 3D object registration, augmentation, and reconstruction. We thoroughly analyse their architectures, advantages, and constraints. In summary, this report provides a comprehensive overview of recent advancements in three-dimensional deep learning and highlights unresolved research areas that will need to be addressed in the future.

2.
Entropy (Basel) ; 25(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37190423

RESUMO

The computer vision, graphics, and machine learning research groups have given a significant amount of focus to 3D object recognition (segmentation, detection, and classification). Deep learning approaches have lately emerged as the preferred method for 3D segmentation problems as a result of their outstanding performance in 2D computer vision. As a result, many innovative approaches have been proposed and validated on multiple benchmark datasets. This study offers an in-depth assessment of the latest developments in deep learning-based 3D object recognition. We discuss the most well-known 3D object recognition models, along with evaluations of their distinctive qualities.

3.
Entropy (Basel) ; 23(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069050

RESUMO

CRISPR/Cas9 is a powerful genome-editing technology that has been widely applied in targeted gene repair and gene expression regulation. One of the main challenges for the CRISPR/Cas9 system is the occurrence of unexpected cleavage at some sites (off-targets) and predicting them is necessary due to its relevance in gene editing research. Very few deep learning models have been developed so far to predict the off-target propensity of single guide RNA (sgRNA) at specific DNA fragments by using artificial feature extract operations and machine learning techniques; however, this is a convoluted process that is difficult to understand and implement for researchers. In this research work, we introduce a novel graph-based approach to predict off-target efficacy of sgRNA in the CRISPR/Cas9 system that is easy to understand and replicate for researchers. This is achieved by creating a graph with sequences as nodes and by using a link prediction method to predict the presence of links between sgRNA and off-target inducing target DNA sequences. Features for the sequences are extracted from within the sequences. We used HEK293 and K562 t datasets in our experiments. GCN predicted the off-target gene knockouts (using link prediction) by predicting the links between sgRNA and off-target sequences with an auROC value of 0.987.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA