Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry (Mosc) ; 87(10): 1187-1198, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36273887

RESUMO

Due to the unique capability of modulating cell membrane potential upon photoactivation, channelrhodopsins of green (Chlorophyta) and cryptophytic (Cryptophyta) algae are widely employed in optogenetics, a modern method of light-dependent regulation of biological processes. To enable the search for new genes perspective for optogenetics, we have developed the PCR tests for the presence of genes of the cation and anion channelrhodopsins. Six isolates of green algae Haematococcus and Bracteacoccus from the White Sea region and 2 specimens of Rhodomonas sp. (Cryptophyta) from the regions of White and Black Seas were analyzed. Using our PCR test we have demonstrated the known Haematococcus rhodopsin genes and have discovered novel rhodopsin genes in the genus of Bracteacoccus. Two distantly homologous genes of anion channelrhodopsins were also identified in the cryptophytic Rhodomonas sp. from the White and Black Seas. These results indicate that the developed PCR tests might be useful tool for a broad-range screening of the Chlorophyta and Cryptophyta algae to identify unique channelrhodopsin genes.


Assuntos
Criptófitas , Rodopsina , Channelrhodopsins/metabolismo , Criptófitas/genética , Criptófitas/metabolismo , Rodopsina/genética , Mar Negro , Optogenética/métodos , Ânions , Cátions
2.
Biochemistry (Mosc) ; 87(12): 1699-1706, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36717458

RESUMO

Non-photochemical quenching (NPQ) of excited chlorophyll states is essential for protecting the photosynthetic apparatus (PSA) from the excessive light-induced damage in all groups of oxygenic photosynthetic organisms. The key component of the NPQ mechanism in green algae and some other groups of algae and mosses is the LhcSR protein of the light harvesting complex (LHC) protein superfamily. In vascular plants, LhcSR is replaced by PsbS, another member of the LHC superfamily and a subunit of photosystem II (PSII). PsbS also performs the photoprotective function in mosses. For a long time, PsbS had been believed to be nonfunctional in green algae, although the corresponding gene was discovered in the genome of these organisms. The first evidence of the PsbS accumulation in the model green alga Chlamydomonas reinhardtii in response to the increase in irradiance was obtained only six years ago. However, the observed increase in the PsbS content was short-termed (on an hour-timescale). Here, we report a significant (more than three orders of magnitude) and prolonged (four days) upregulation of PsbS expression in response to the chilling-induced high-light stress followed by a less significant (~ tenfold) increase in the PsbS expression for nine days. This is the first evidence for the long-term upregulation of the PsbS expression in green alga (Chlorophyta) in response to stress. Our data indicate that the role of PsbS in the PSA of Chlorophyta is not limited to the first-line defense against stress, as it was previously assumed, but includes full-scale participation in the photoprotection of PSA from the environmental stress factors.


Assuntos
Chlamydomonas reinhardtii , Microalgas , Luz , Microalgas/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/genética , Complexo de Proteína do Fotossistema II/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Plantas/metabolismo , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo
3.
Foods ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613265

RESUMO

Kombucha tea was made by the fermentation of SCOBY culture of green tea broth with the addition of Fucus vesiculosus algae extract, Cetraria islandica lichen extract and their mixture. Kombucha was also made without the herbal supplements as a control. After 11 days of fermentation, in addition to the yeast Brettanomyces bruxellensis and the bacteria Komagataeibacter rhaeticus and Komagataeibacter hansenii contained in all of the samples, the yeast Zygosaccharomyces bailii and bacteria Komagataeibacter cocois were detected in the samples with the herbal extracts. In all of the kombucha with herbal additives, the total fraction of yeast was decreased as compared to the control. The total content of polyphenols and the antioxidant activity of the beverages with and without the addition of herbal extracts were comparable. The kombucha made with the algae extract showed an increased content of sucrose and organic acids, while the fructose and glucose content in the samples with algae and the mixture of extracts were lower than in the other samples. The samples with the algae extract had the highest organoleptic indicators "aroma", "clarity" and "acidity", while the control samples had slightly higher indicators of "taste" and "aftertaste". The results of this study indicate the potential of algae and lichens as functional supplements for obtaining non-alcoholic fermented beverages with additional nutraceutical value.

4.
Biochemistry (Mosc) ; 86(12): 1590-1598, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34937538

RESUMO

Photosynthetic organisms have developed a set of mechanisms aimed at preventing photo-oxidative reactions in the photosynthetic apparatus (PSA) initiated by excessively absorbed light energy. Along with high irradiance, other stressors, e.g., chilling temperatures, can lead to the absorption of the excess of light energy and hence to photo-oxidative stress. Here, we studied induction of photoprotective mechanisms in response to chilling (0°C) at a low irradiance (50 µmol PAR photons m-2·s-1) in the cells of microalga Lobosphaera incisa IPPAS C-2047. After 4 days of incubation at a low temperature, L. incisa IPPAS C-2047 cells showed a notable decrease in the photochemical activity of photosystem II (PSII) and in the efficiency of photosynthetic electron transport, as well as a significant increase in the thermal dissipation of the absorbed light energy in the light-harvesting antenna. In contrast, most conventional markers of PSA acclimation to excess light energy [total chlorophyll and carotenoid content; violaxanthin cycle pigment content and de-epoxidation state; photosynthetic antenna, PSII, and photosystem I (PSI) ratio] remained virtually unchanged. The content of major unsaturated fatty acids also remained almost unaffected, except for arachidonic acid (increased by 40%) recently assumed to activate violaxanthin de-epoxidase by adjusting its lipid microenvironment. Significant changes (4-7-fold increase) were observed in the expression of the gene encoding protective protein LhcSR. Pre-conditioning at 5°C prior to the acclimation to 0°C augmented the PSA photochemical activity. Our data show that the mid-term (4-d) acclimation of L. incisa IPPAS C-2047 to a chilling temperature at a low irradiance triggers the PSA response resembling, in part, the response to high light but relying mostly on the LhcSR protein-dependent quenching of excitation in the photosynthetic antenna.


Assuntos
Clorófitas/enzimologia , Temperatura Baixa , Microalgas/metabolismo , Fotossíntese , Complexo de Proteína do Fotossistema II/metabolismo , Clorófitas/química , Microalgas/química , Complexo de Proteína do Fotossistema II/química
5.
Biology (Basel) ; 10(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34943267

RESUMO

The Greater Caucasus is a part of seismically active Alpine-Himalayan orogenic belt and has been a center of significant volcanic activity during the Quaternary period. That led to the formation of the number of hydrothermal habitats, including subterranean thermal aquifers and surface hot springs. However, there are only a limited number of scientific works reporting on the microbial communities of these habitats. Moreover, all these reports concern only studies of specific microbial taxa, carried out using classical cultivation approaches. In this work, we present first culture-independent study of hydrotherms in the Republic of North Ossetia-Alania, located in the southern part of the North Caucasus. Using 16S metabarcoding, we analyzed the composition of the microbial communities of two subterranean thermal aquifers and terrestrial hot springs of the Karmadon valley. Analysis of correlations between the chemical composition of water and the representation of key taxa allowed us to identify the key factors determining the formation of microbial communities. In addition, we were able to identify a significant number of highly abundant deep phylogenetic lineages. Our study represents a first glance on the thermophilic microbial communities of the North Caucasus and may serve as a basis for further microbiological studies of the extreme habitats of this region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA