Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37878903

RESUMO

Inherent properties of superconducting Bi2Sr2CaCu2O8+x films, such as the high superconducting transition temperature Tc, efficient Josephson coupling between neighboring CuO layers, and fast quasiparticle relaxation dynamics, make them a promising platform for advances in quantum computing and communication technologies. However, preserving two-dimensional superconductivity during device fabrication is an outstanding experimental challenge because of the fast degradation of the superconducting properties of two-dimensional flakes when they are exposed to moisture, organic solvents, and heat. Herein, to realize superconducting devices utilizing two-dimensional (2D) superconducting films, we develop a novel fabrication technique relying on the cryogenic dry transfer of printable circuits embedded into a silicon nitride membrane. This approach separates the circuit fabrication stage requiring chemically reactive substances and ionizing physical processes from the creation of the thin superconducting structures. Apart from providing electrical contacts in a single transfer step, the membrane encapsulates the surface of the crystal, shielding it from the environment. The fabricated atomically thin Bi2Sr2CaCu2O8+x-based devices show a high superconducting transition temperature of Tc ≃ 91 K close to that of the bulk crystal and demonstrate stable superconducting properties.

2.
Adv Sci (Weinh) ; 10(14): e2206523, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36965030

RESUMO

Superconductivity remains one of most fascinating quantum phenomena existing on a macroscopic scale. Its rich phenomenology is usually described by the Ginzburg-Landau (GL) theory in terms of the order parameter, representing the macroscopic wave function of the superconducting condensate. The GL theory addresses one of the prime superconducting properties, screening of the electromagnetic field because it becomes massive within a superconductor, the famous Anderson-Higgs mechanism. Here the authors describe another widely-spread type of superconductivity where the Anderson-Higgs mechanism does not work and must be replaced by the Deser-Jackiw-Templeton topological mass generation and, correspondingly, the GL effective field theory must be replaced by an effective topological gauge theory. These superconductors are inherently inhomogeneous granular superconductors, where electronic granularity is either fundamental or emerging. It is shown that the corresponding superconducting transition is a 3D generalization of the 2D Berezinskii-Kosterlitz-Thouless vortex binding-unbinding transition. The binding-unbinding of the line-like vortices in 3D results in the Vogel-Fulcher-Tamman scaling of the resistance near the superconducting transition. The authors report experimental data fully confirming the VFT behavior of the resistance.

3.
Adv Mater ; 35(15): e2209135, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36693810

RESUMO

High-temperature cuprate superconductors based van der Waals (vdW) heterostructures hold high technological promise. One of the obstacles hindering their progress is the detrimental effect of disorder on the properties of the vdW-devices-based Josephson junctions (JJs). Here, a new method of fabricating twisted vdW heterostructures made of Bi2 Sr2 CuCa2 O8+δ , crucially improving the JJ characteristics and pushing them up to those of the intrinsic JJs in bulk samples, is reported. The method combines cryogenic stacking using a solvent-free stencil mask technique and covering the interface by insulating hexagonal boron nitride crystals. Despite the high-vacuum condition down to 10-6 mbar in the evaporation chamber, the interface appears to be protected from water molecules during the in situ metal deposition only when fully encapsulated. Comparing the current-voltage curves of encapsulated and unencapsulated interfaces, it is revealed that the encapsulated interfaces' characteristics are crucially improved, so that the corresponding JJs demonstrate high critical currents and sharpness of the superconducting transition comparable to those of the intrinsic JJs. Finally, it is shown that the encapsulated heterostructures are more stable over time.

4.
Adv Mater ; 34(45): e2203028, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36114716

RESUMO

Ferroelectric domain walls provide a fertile environment for novel materials physics. If a polarization discontinuity arises, it can drive a redistribution of electronic carriers and changes in band structure, which often result in emergent 2D conductivity. If such a discontinuity is not tolerated, then its amelioration usually involves the formation of complex topological patterns, such as flux-closure domains, dipolar vortices, skyrmions, merons, or Hopfions. The degrees of freedom required for the development of such patterns, in which dipolar rotation is a hallmark, are readily found in multiaxial ferroelectrics. In uniaxial ferroelectrics, where only two opposite polar orientations are possible, it has been assumed that discontinuities are unavoidable when antiparallel components of polarization meet. This perception has been borne out by the appearance of charged conducting domain walls in systems such as hexagonal manganites and lithium niobate. Here, experimental and theoretical investigations on lead germanate (Pb5 Ge3 O11 ) reveal that polar discontinuities can be obviated at head-to-head and tail-to-tail domain walls by mutual domain bifurcation along two different axes, creating a characteristic saddle-point domain wall morphology and associated novel dipolar topology, removing the need for screening charge accumulation and associated conductivity enhancement.

6.
Nanomaterials (Basel) ; 12(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35010024

RESUMO

It is well known that the ferroelectric layers in dielectric/ferroelectric/dielectric heterostructures harbor polarization domains resulting in the negative capacitance crucial for manufacturing energy-efficient field-effect transistors. However, the temperature behavior of the characteristic dielectric properties, and, hence, the corresponding behavior of the negative capacitance, are still poorly understood, restraining the technological progress thereof. Here we investigate the temperature-dependent properties of domain structures in the SrTiO3/PbTiO3/SrTiO3 heterostructures and demonstrate that the temperature-thickness phase diagram of the system includes the ferroelectric and paraelectric regions, which exhibit different responses to the applied electric field. Using phase-field modeling and analytical calculations we find the temperature dependence of the dielectric constant of ferroelectric layers and identify the regions of the phase diagram wherein the system demonstrates negative capacitance. We further discuss the optimal routes for implementing negative capacitance in energy-efficient ferroelectric field-effect transistors.

8.
Sci Rep ; 9(1): 17484, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31767882

RESUMO

Non-conservative physical systems admit a special kind of spectral degeneracy, known as exceptional point (EP), at which eigenvalues and eigenvectors of the corresponding non-Hermitian Hamiltonian coalesce. Dynamical parametric encircling of the EP can lead to non-adiabatic evolution associated with a state flip, a sharp transition between the resonant modes. Physical consequences of the dynamical encircling of EPs in open dissipative systems have been explored in optics and photonics. Building on the recent progress in understanding the parity-time ([Formula: see text])-symmetric dynamics in spin systems, we use topological properties of EPs to implement chiral non-reciprocal transmission of a spin through the material with non-uniform magnetization, like helical magnet. We consider an exemplary system, spin-torque-driven single spin described by the time-dependent non-Hermitian Hamiltonian. We show that encircling individual EPs in a parameter space results in non-reciprocal spin dynamics and find the range of optimal protocol parameters for high-efficiency asymmetric spin filter based on this effect. Our findings offer a platform for non-reciprocal spin devices for spintronics and magnonics.

9.
Phys Rev Lett ; 122(24): 247001, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31322397

RESUMO

We developed novel techniques to fabricate atomically thin Bi_{2.1}Sr_{1.9}CaCu_{2.0}O_{8+δ} van der Waals heterostructures down to two unit cells while maintaining a transition temperature T_{c} close to the bulk, and carry out magnetotransport measurements on these van der Waals devices. We find a double sign change of the Hall resistance R_{xy} as in the bulk system, spanning both below and above T_{c}. Further, we observe a drastic enlargement of the region of sign reversal in the temperature-magnetic field phase diagram with decreasing thickness of the device. We obtain quantitative agreement between experimental R_{xy}(T,B) and the predictions of the vortex dynamics-based description of Hall effect in high-temperature superconductors both above and below T_{c}.

10.
Sci Rep ; 9(1): 211, 2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30659219

RESUMO

Transport characteristics of nano-sized superconducting strips and bridges are determined by an intricate interplay of surface and bulk pinning. In the limiting case of a very narrow bridge, the critical current is mostly defined by its surface barrier, while in the opposite case of very wide strips it is dominated by its bulk pinning properties. Here we present a detailed study of the intermediate regime, where the critical current is determined, both, by randomly placed pinning centres and by the Bean-Livingston barrier at the edge of the superconducting strip in an external magnetic field. We use the time-dependent Ginzburg-Landau equations to describe the vortex dynamics and current distribution in the critical regime. Our studies reveal that while the bulk defects arrest vortex motion away from the edges, defects in their close vicinity promote vortex penetration, thus suppressing the critical current. We determine the spatial distribution of the defects optimizing the critical current and find that it is in general non-uniform and asymmetric: the barrier at the vortex-exit edge influence the critical current much stronger than the vortex-entrance edge. Furthermore, this optimized defect distribution has a more than 30% higher critical current density than a homogeneously disorder superconducting film.

11.
Sci Rep ; 8(1): 15460, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337558

RESUMO

Proliferation of topological defects like vortices and dislocations plays a key role in the physics of systems with long-range order, particularly, superconductivity and superfluidity in thin films, plasticity of solids, and melting of atomic monolayers. Topological defects are characterized by their topological charge reflecting fundamental symmetries and conservation laws of the system. Conservation of topological charge manifests itself in extreme stability of static topological defects because destruction of a single defect requires overcoming a huge energy barrier proportional to the system size. However, the stability of driven topological defects remains largely unexplored. Here we address this issue and investigate numerically a dynamic instability of moving vortices in planar arrays of Josephson junctions. We show that a single vortex driven by sufficiently strong current becomes unstable and destroys superconductivity by triggering a chain reaction of self-replicating vortex-antivortex pairs forming linear of branching expanding patterns. This process can be described in terms of propagating phase cracks in long-range order with far-reaching implications for dynamic systems of interacting spins and atoms hosting magnetic vortices and dislocations.

12.
Sci Rep ; 7(1): 1718, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28496099

RESUMO

A reentrant temperature dependence of the normal state resistance often referred to as the N-shaped temperature dependence, is omnipresent in disordered superconductors - ranging from high-temperature cuprates to ultrathin superconducting films - that experience superconductor-to-insulator transition. Yet, despite the ubiquity of this phenomenon its origin still remains a subject of debate. Here we investigate strongly disordered superconducting TiN films and demonstrate universality of the reentrant behavior. We offer a quantitative description of the N-shaped resistance curve. We show that upon cooling down the resistance first decreases linearly with temperature and then passes through the minimum that marks the 3D-2D crossover in the system. In the 2D temperature range the resistance first grows with decreasing temperature due to quantum contributions and eventually drops to zero as the system falls into a superconducting state. Our findings demonstrate the prime importance of disorder in dimensional crossover effects.

13.
Sci Rep ; 7: 44044, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28300065

RESUMO

We study numerically the voltage-induced breakdown of a Mott insulating phase in a system of charged classical particles with long-range interactions. At half-filling on a square lattice this system exhibits Mott localization in the form of a checkerboard pattern. We find universal scaling behavior of the current at the dynamic Mott insulator-metal transition and calculate scaling exponents corresponding to the transition. Our results are in agreement, up to a difference in universality class, with recent experimental evidence of a dynamic Mott transition in a system of interacting superconducting vortices.

14.
Sci Rep ; 7: 42770, 2017 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-28218245

RESUMO

The two-dimensional (2D) logarithmic character of Coulomb interaction between charges and the resulting logarithmic confinement is a remarkable inherent property of high dielectric constant (high-κ) thin films with far reaching implications. Most and foremost, this is the charge Berezinskii-Kosterlitz-Thouless transition with the notable manifestation, low-temperature superinsulating topological phase. Here we show that the range of the confinement can be tuned by the external gate electrode and unravel a variety of electrostatic interactions in high-k films. We find that by reducing the distance from the gate to the film, we decrease the spatial range of the 2D long-range logarithmic interaction, changing it to predominantly dipolar or even to exponential one at lateral distances exceeding the dimension of the film-gate separation. Our findings offer a unique laboratory for the in-depth study of topological phase transitions and related phenomena that range from criticality of quantum metal- and superconductor-insulator transitions to the effects of charge-trapping and Coulomb scalability in memory nanodevices.

15.
Sci Rep ; 7: 42196, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28176866

RESUMO

The tunability of electrical polarization in ferroelectrics is instrumental to their applications in information-storage devices. The existing ferroelectric memory cells are based on the two-level storage capacity with the standard binary logics. However, the latter have reached its fundamental limitations. Here we propose ferroelectric multibit cells (FMBC) utilizing the ability of multiaxial ferroelectric materials to pin the polarization at a sequence of the multistable states. Employing the catastrophe theory principles we show that these states are symmetry-protected against the information loss and thus realize novel topologically-controlled access memory (TAM). Our findings enable developing a platform for the emergent many-valued non-Boolean information technology and target challenges posed by needs of quantum and neuromorphic computing.

16.
Science ; 349(6253): 1202-5, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26359398

RESUMO

An array of superconducting islands placed on a normal metal film offers a tunable realization of nanopatterned superconductivity. This system enables investigation of the nature of competing vortex states and phase transitions between them. A square array creates the eggcrate potential in which magnetic field-induced vortices are frozen into a vortex insulator. We observed a vortex insulator-vortex metal transition driven by the applied electric current and determined critical exponents that coincided with those for thermodynamic liquid-gas transition. Our findings offer a comprehensive description of dynamic critical behavior and establish a deep connection between equilibrium and nonequilibrium phase transitions.

17.
Sci Rep ; 5: 14062, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26365753

RESUMO

We report first principle numerical study of domain wall (DW) depinning in two-dimensional magnetic film, which is modeled by 2D random-field Ising system with the dipole-dipole interaction. We observe nonconventional activation-type motion of DW and reveal the fractal structure of DW near the depinning transition. We determine scaling functions describing critical dynamics near the transition and obtain universal exponents establishing connection between thermal softening of pinning potential and critical dynamics. We observe that tuning the strength of the dipole-dipole interaction switches DW dynamics between two different universality classes, corresponding to two distinct dynamic regimes characterized by non-Arrhenius and conventional Arrhenius-type DW motions.


Assuntos
Modelos Teóricos , Magnetismo , Temperatura
18.
J Phys Condens Matter ; 25(35): 355701, 2013 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-23912063

RESUMO

We study temperature T and frequency ω dependence of the in-plane fluctuation conductivity of a disordered superconducting film above the critical temperature. Our calculation is based on the nonlinear sigma model within the Keldysh technique. The fluctuation contributions of different physical origin are found and analyzed in a wide frequency range. In the low-frequency range, ω ≪ T, we reproduce the known leading terms and find additional subleading ones in the Aslamazov-Larkin and the Maki-Thompson contributions to the ac conductivity. We also calculate the density of states ac correction. In the dc case these contributions logarithmically depend on the Ginzburg-Landau rate and are considerably smaller that the leading ones. However, in the ac case an external finite-frequency electromagnetic field strongly suppresses the known Aslamazov-Larkin and Maki-Thompson ac contributions, while the corresponding new terms and the density of states contribution are weakly suppressed and therefore become relevant at finite frequencies.


Assuntos
Impedância Elétrica , Membranas Artificiais , Modelos Químicos , Modelos Moleculares , Simulação por Computador
19.
Nat Commun ; 1: 140, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21266990

RESUMO

A superconducting state is characterized by the gap in the electronic density of states, which vanishes at the superconducting transition temperature T(c). It was discovered that in high-temperature superconductors, a noticeable depression in the density of states, the pseudogap, still remains even at temperatures above T(c). Here, we show that a pseudogap exists in a conventional superconductor, ultrathin titanium nitride films, over a wide range of temperatures above T(c). Our study reveals that this pseudogap state is induced by superconducting fluctuations and favoured by two-dimensionality and by the proximity to the transition to the insulating state. A general character of the observed phenomenon provides a powerful tool to discriminate between fluctuations as the origin of the pseudogap state and other contributions in the layered high-temperature superconductor compounds.

20.
Nature ; 452(7187): 613-5, 2008 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-18385735

RESUMO

Synchronized oscillators are ubiquitous in nature, and synchronization plays a key part in various classical and quantum phenomena. Several experiments have shown that in thin superconducting films, disorder enforces the droplet-like electronic texture--superconducting islands immersed into a normal matrix--and that tuning disorder drives the system from superconducting to insulating behaviour. In the vicinity of the transition, a distinct state forms: a Cooper-pair insulator, with thermally activated conductivity. It results from synchronization of the phase of the superconducting order parameter at the islands across the whole system. Here we show that at a certain finite temperature, a Cooper--air insulator undergoes a transition to a superinsulating state with infinite resistance. We present experimental evidence of this transition in titanium nitride films and show that the superinsulating state is dual to the superconducting state: it is destroyed by a sufficiently strong critical magnetic field, and breaks down at some critical voltage that is analogous to the critical current in superconductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA