Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
ACS Omega ; 9(15): 16927-16948, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645331

RESUMO

Pharmacologically active salicylanilides (2-hydroxy-N-phenylbenzamides) have been a promising area of interest in medicinal chemistry-related research for quite some time. This group of compounds has shown a wide spectrum of biological activities, including but not limited to anticancer effects. In this study, substituted salicylanilides were chosen to evaluate the in vitro activity on U87 human glioblastoma (GBM) cells. The parent salicylanilide, salicylanilide 5-chloropyrazinoates, a 4-aminosalicylic acid derivative, and the new salicylanilide 4-formylbenzoates were chemically and in vitro characterized. To enhance the internalization of the compounds, they were conjugated to delivery peptides with the formation of oxime bonds. Oligotuftsins ([TKPKG]n, n = 1-4), the ligands of neuropilin receptors, were used as GBM-targeting carrier peptides. The in vitro cellular uptake, intracellular localization, and penetration ability on tissue-mimicking models of the fluorescent peptide derivatives were determined. The compounds and their peptide conjugates significantly decreased the viability of U87 glioma cells. Salicylanilide compound-induced GBM cell death was associated with activation of autophagy, as characterized by immunodetection of autophagy-related processing of light chain 3 protein.

2.
J Mol Model ; 29(8): 271, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37535185

RESUMO

CONTEXT: Various concentrations of (E)-4-methoxy-N'-(2-(trifluoromethyl)benzylidene) benzohydrazide (EMT) adsorbed on colloidal silver nanoparticles were studied using SERS and results were compared to the normal Raman spectrum. DFT calculations were used to validate experimental findings. Theoretically, the structures of the EMT and EMT-Ag6 systems were optimized. The UV-Vis spectral analysis's red shift and lower intensity behavior show that EMT has chemisorbed onto Ag nanoparticles. Charge transfer (CT) from Ag to EMT is highlighted by FMO analysis. The CT interaction in EMT and EMT-Ag6 was further verified by MEP and Mulliken charge analyses. The EMT was adsorbed on Ag nanoparticles with tilted orientation and orientation changes with colloidal concentration, according to SERS spectrum analysis. Docking EMT with 4PQE and 5DYW binding affinities are found to be -9.7 and -8.1 kcal/mol. MD simulations give the competence of 5DYW-EMT and 4PQE-EMT in their intended binding interactions and their ability to establish enduring associations with the protein of interest. METHODS: DFT was used to optimize the molecular structures of EMT and EMT-Ag6 using B3LYP/6-311++G* (LANL2DZ basis set for Ag). A molecular dynamics simulation study was conducted on the 4PQE-EMT and 5DYW-EMT systems using the Desmond software for 100 ns.


Assuntos
Butirilcolinesterase , Nanopartículas Metálicas , Humanos , Prata/química , Acetilcolinesterase , Teoria da Densidade Funcional , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos
3.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37259322

RESUMO

On the basis of previous reports, novel 2-benzoylhydrazine-1-carboxamides were designed as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Inhibitors of these enzymes have many clinical applications. 2-(Substituted benzoyl)hydrazine-1-carboxamides decorated with N-methyl or tridecyl were prepared with three methods from commercially available or self-prepared hydrazides and isocyanates. For methyl derivatives, N-succinimidyl N-methylcarbamate was used or methyl isocyanate was prepared via Curtius rearrangement. Tridecyl isocyanate was synthesized again via Curtius rearrangement or from triphosgene and tridecylamine. The compounds were evaluated for the inhibition of AChE and BChE using Ellman's spectrophotometric method. Most of the derivatives showed the dual inhibition of both enzymes with IC50 values of 44-100 µM for AChE and from 22 µM for BChE. In general, the carboxamides inhibited AChE more strongly. A large number of the compounds showed better or quite comparable inhibition of cholinesterases in vitro than that of the drug rivastigmine. Molecular docking was performed to investigate the possible conformation of the compounds and their interactions with target enzymes. In both AChE and BChE, the compounds occupied the enzyme active cavity, and, especially in the case of BChE, the compounds were placed in close proximity to the catalytic triad.

4.
Future Med Chem ; 15(3): 255-274, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36891917

RESUMO

Background: Increasing rates of acquired resistance have justified the critical need for novel antimicrobial drugs. One viable concept is the modification of known drugs. Methods & results: 21 mafenide-based compounds were prepared via condensation reactions and screened for antimicrobial efficacy, which demonstrated promising activity against both Gram-positive and Gram-negative pathogens, pathogenic fungi and mycobacterial strains (minimum inhibitory concentrations from 3.91 µM). Importantly, they retained activity against a panel of superbugs (methicillin- and vancomycin-resistant staphylococci, enterococci, multidrug-resistant Mycobacterium tuberculosis) without any cross-resistance. Unlike mafenide, most of its imines were bactericidal. Toxicity to HepG2 cells was also investigated. Conclusion: Schiff bases were significantly more active than the parent drug, with iodinated salicylidene and 5-nitrofuran/thiophene-methylidene scaffolds being preferred in identifying the most promising drug candidates.


Assuntos
Anti-Infecciosos , Mycobacterium tuberculosis , Mafenida , Bases de Schiff/farmacologia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana
5.
Eur J Med Chem ; 246: 114922, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36455357

RESUMO

Aldose reductase, the first enzyme of the polyol pathway represents a key drug target in therapy of diabetic complications. In this study a series of six novel rhodanine based inhibitors of aldose reductase was designed, synthesized, and tested for their ability to inhibit aldose reductase and for selectivity relative to structurally related aldehyde reductase. Aldose reductase inhibitory activities of the compounds were characterized by the IC50 values ranging from 2000 nM to 20 nM. The values of selectivity factors relative to aldehyde reductase were decreasing in the same array from 24 to 5. In silico docking into the inhibitor binding site of aldose reductase revealed a specific binding pattern of the compounds comprising interaction of the deprotonated 4-hydroxybenzylidene group with the anion-binding sub-pocket of aldose reductase, creating a strong H-bond and charge interactions. Predicted pH-distribution profiles of the novel compounds into octanol, supported by experimentally determined distribution ratios, favour drug uptake at the physiological pH, as a result of the presence of the low-acidic phenolic group, instead of the more acidic carboxymethyl functional group.


Assuntos
Inibidores Enzimáticos , Rodanina , Inibidores Enzimáticos/química , Aldeído Redutase , Rodanina/farmacologia , Rodanina/química , Sítios de Ligação
6.
Curr Top Med Chem ; 22(32): 2695-2706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35929626

RESUMO

BACKGROUND: There is an urgent need for new antitubercular compounds. Modification of antimycobacterial isonicotinohydrazide at hydrazide N2 provided antimycobacterial active compounds. OBJECTIVE: Combining this scaffold with various aliphatic amines that are also frequently present in antitubercular compounds, we have designed, synthesized, and evaluated twenty-three N- (cyclo)alkyl-2-(2-isonicotinoylhydrazineylidene)propanamides and their analogues as potential antimycobacterial compounds. By increasing lipophilicity, we intended to facilitate the penetration of mycobacteria's highly impermeable cell wall. METHODS: The target amides were prepared via condensation of isoniazid and pyruvic acid, followed by carbodiimide-mediated coupling with yields from 35 to 98 %. The compounds were screened against Mycobacterium tuberculosis H37Rv and two nontuberculous mycobacteria (M. avium, M. kansasii). RESULTS: All the derivatives exhibited low minimum inhibitory concentrations (MIC) from ≤0.125 and 2 µM against M. tuberculosis and nontuberculous mycobacteria, respectively. The most active molecules were substituted by a longer n-alkyl from C8 to C14. Importantly, the compounds showed comparable or even several-fold lower MIC than parent isonicotinohydrazide. Based on in silico predictions, a vast majority of the derivatives share suitable physicochemical properties and structural features for drug-likeness. CONCLUSION: Presented amides are promising antimycobacterial agents.


Assuntos
Isoniazida , Mycobacterium tuberculosis , Isoniazida/farmacologia , Isoniazida/química , Antituberculosos/química , Aminas/farmacologia , Amidas/farmacologia , Testes de Sensibilidade Microbiana
7.
Eur J Pharm Sci ; 176: 106252, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35793749

RESUMO

Novel antimycobacterial drugs are needed, especially those with dual activity against both actively growing and non-replicating subpopulations of mycobacteria. Isocitrate lyase (ICL) is one of proposed targets and this enzyme is inhibited by itaconic acid. That is why we have designed and prepared sixteen amides of itaconic acid and various anilines and amine antimicrobial drugs to evaluate them as potential inhibitors of ICL and antimycobacterial agents. N-Phenylitaconamides were prepared from itaconic anhydride and substituted anilines (yields 57-99%). They were characterized and evaluated against mycobacterial ICL and against actively growing mycobacteria (M. tuberculosis H37Rv, M. avium, two strains of M. kansasii). All derivatives showed antimycobacterial efficacy with minimum inhibitory concentrations starting from 125 µM. M. kansasii was the most susceptible species. Itaconamides derived from sulfonamides or p-aminosalicylic acid were optimal for activity against extracellular mycobacteria. ICL1 was significantly inhibited by two compounds, with 2-methylene-4-[(4-nitrophenyl)amino]-4-oxobutanoic acid 1k being the most potent (36% inhibition at 10 µM), which was also more efficient than two comparators. Molecular docking revealed its mode of binding to the enzyme. Using in silico tools, physicochemical properties and structural features for drug-likeness and gastrointestinal absorption were evaluated.


Assuntos
Isocitrato Liase , Mycobacterium tuberculosis , Compostos de Anilina , Antibacterianos/farmacologia , Isocitrato Liase/química , Isocitrato Liase/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/metabolismo
8.
Pharmaceuticals (Basel) ; 15(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35455397

RESUMO

2,5-Disubstituted 1,3,4-oxadiazoles are privileged versatile scaffolds in medicinal chemistry that have exhibited diverse biological activities. Acetyl- (AChE) and butyrylcholinesterase (BChE) inhibitors are used, e.g., to treat dementias and myasthenia gravis. 5-Aryl-1,3,4-oxadiazoles decorated with dodecyl linked via nitrogen, sulfur or directly to this heterocycle have been designed as potential inhibitors of AChE and BChE. They were prepared from commercially available or in-house prepared hydrazides by reaction with dodecyl isocyanate to form hydrazine-1-carboxamides 2 (yields 67-98%) followed by cyclization using p-toluenesulfonyl chloride and triethylamine in 41-100% yields. Thiadiazole isostere was also synthesized. The derivatives were screened for inhibition of AChE and BChE using Ellman's spectrophotometric method. The compounds showed a moderate dual inhibition with IC50 values of 12.8-99.2 for AChE and from 53.1 µM for BChE. All the heterocycles were more efficient inhibitors of AChE. The most potent inhibitor, N-dodecyl-5-(pyridin-4-yl)-1,3,4-thiadiazol-2-amine 3t, was subjected to advanced reversibility and type of inhibition evaluation. Structure-activity relationships were identified. Many oxadiazoles showed lower IC50 values against AChE than established drug rivastigmine. According to molecular docking, the compounds interact non-covalently with AChE and BChE and block entry into enzyme gorge and catalytic site, respectively.

9.
Eur J Pharm Biopharm ; 174: 111-130, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35378278

RESUMO

Mycobacterium tuberculosis is an intracellular pathogen and the uptake of the antimycobacterial compounds by host cells is limited. Novel antimycobacterials effective against intracellular bacteria are needed. New N-substituted derivatives of 4-aminosalicylic acid have been designed and evaluated. To achieve intracellular efficacy and selectivity, these compounds were conjugated to tuftsin peptides via oxime or amide bonds. These delivery peptides can target tuftsin- and neuropilin receptor-bearing cells, such as macrophages and various other cells of lung origin. We have demonstrated that the in vitro antimycobacterial activity of the 4-aminosalicylic derivatives against M. tuberculosis H37Rv was preserved in the peptide conjugates. The free drugs were ineffective on infected cells, but the conjugates were active against the intracellular bacteria and have the selectivity on various types of host cells. The intracellular distribution of the carrier peptides was assessed, and the peptides internalize and display mainly in the cytosol in a concentration-dependent manner. The penetration ability of the most promising carrier peptide OT5 was evaluated using Transwell-inserts and spheroids. The pentapeptide exhibited time- and concentration-dependent penetration across the non-contact monolayers. Also, the pentapeptide has a fair penetration rate towards the center of spheroids formed of EBC-1 cells.


Assuntos
Ácido Aminossalicílico , Mycobacterium tuberculosis , Tuftsina , Ácido Aminossalicílico/farmacologia , Antibacterianos/farmacologia , Antituberculosos/química , Antituberculosos/farmacologia , Excipientes/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos/química , Tuftsina/química , Tuftsina/farmacologia
10.
J Biomol Struct Dyn ; 40(15): 6952-6964, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-33645445

RESUMO

Spectroscopic analysis, density functional theory (DFT) studies and surface enhanced Raman scattering (SERS) of (E)-N'-(5-chloro-2-hydroxybenzylidene)-4-trifluoromethyl) benzohydrazide (CHTB) have been studied on different silver colloids in order to know the particular chemical species responsible for the spectra. Very significant shifts are observed for Raman and SERS wavenumbers. Observed changes in the υ-ring modes may be due to surface interaction of the π-electrons and the presence of this suggested that RingII is more tilted in both cases than RingI and the molecule assumes a tilted orientation for the concentration 10-3 M. Orientation changes are seen in concentration dependent SERS spectra. The molecular electrostatic potential has also been constructed to determine the electron rich and poor site of CHTB. The molecular docking studies indicate that the binding affinity and hydrogen bond interactions with the receptors may be supporting evidence for further studies in designing other pharmaceutical applications of CHTB.Communicated by Ramaswamy H. Sarma.


Assuntos
Elétrons , Análise Espectral Raman , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Análise Espectral Raman/métodos , Eletricidade Estática
11.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34959630

RESUMO

A series of thirty-one hydrazones of aminoguanidine, nitroaminoguanidine, 1,3-diaminoguanidine, and (thio)semicarbazide were prepared from various aldehydes, mainly chlorobenzaldehydes, halogenated salicylaldehydes, 5-nitrofurfural, and isatin (yields of 50-99%). They were characterized by spectral methods. Primarily, they were designed and evaluated as potential broad-spectrum antimicrobial agents. The compounds were effective against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus with minimum inhibitory concentrations (MIC) from 7.8 µM, as well as Gram-negative strains with higher MIC. Antifungal evaluation against yeasts and Trichophyton mentagrophytes found MIC from 62.5 µM. We also evaluated inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The compounds inhibited both enzymes with IC50 values of 17.95-54.93 µM for AChE and ≥1.69 µM for BuChE. Based on the substitution, it is possible to modify selectivity for a particular cholinesterase as we obtained selective inhibitors of either AChE or BuChE, as well as balanced inhibitors. The compounds act via mixed-type inhibition. Their interactions with enzymes were studied by molecular docking. Cytotoxicity was assessed in HepG2 cells. The hydrazones differ in their toxicity (IC50 from 5.27 to >500 µM). Some of the derivatives represent promising hits for further development. Based on the substitution pattern, it is possible to modulate bioactivity to the desired one.

12.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34959704

RESUMO

The combination of two active scaffolds into one molecule represents a proven approach in drug design to overcome microbial drug resistance. We designed and synthesized more lipophilic esters of 2-(2-isonicotinoylhydrazineylidene)propanoic acid, obtained from antitubercular drug isoniazid, with various alcohols, phenols and thiols, including several drugs, using carbodiimide-mediated coupling. Nineteen new esters were evaluated as potential antimycobacterial agents against drug-sensitive Mycobacterium tuberculosis (Mtb.) H37Rv, Mycobacterium avium and Mycobacterium kansasii. Selected derivatives were also tested for inhibition of multidrug-resistant (MDR) Mtb., and their mechanism of action was investigated. The esters exhibited high activity against Mtb. (minimum inhibitory concentrations, MIC, from ≤0.125 µM), M. kansasii, M. avium as well as MDR strains (MIC from 0.25, 32 and 8 µM, respectively). The most active mutual derivatives were derived from 4-chloro/phenoxy-phenols, triclosan, quinolin-8-ol, naphthols and terpene alcohols. The experiments identified enoyl-acyl carrier protein reductase (InhA), and thus mycobacterial cell wall biosynthesis, as the main target of the molecules that are activated by KatG, but for some compounds can also be expected adjunctive mechanism(s). Generally, the mutual esters have also avoided cytotoxicity and are promising hits for the discovery of antimycobacterial drugs with improved properties compared to parent isoniazid.

13.
Future Med Chem ; 13(22): 1945-1962, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34633218

RESUMO

Background: Increasing resistance has resulted in an urgent need for new antimicrobial drugs. A systematic me-too approach was chosen to modify clinically used sulfonamides to obtain their imines. Methods & results: Twenty-five compounds were synthesized and evaluated for their antibacterial activity. The most active compounds were also investigated against methicillin- and trimethoprim/sulfamethoxazole (SMX)-resistant Gram-positive species. Staphylococci shared the highest susceptibility including resistant strains with minimum inhibitory concentrations from 3.91 µM (≥2.39 µg ml-1). Crucially, the compounds inhibit MRSA and trimethoprim/SMX-resistant Staphylococci without any cross-resistance. Modification of parent sulfonamides turned a bacteriostatic effect into a bactericidal effect. Toxicity for HepG2 and hemolytic properties were also determined. Conclusions: The presence of a dihalogenated salicylidene moiety is required for optimal activity. Based on toxicity, promising derivatives for further investigation were identified.


Assuntos
Aldeídos/farmacologia , Antibacterianos/farmacologia , Iminas/farmacologia , Staphylococcus/efeitos dos fármacos , Sulfonamidas/farmacologia , Aldeídos/química , Antibacterianos/síntese química , Antibacterianos/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Iminas/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Sulfonamidas/química
14.
Bioorg Chem ; 116: 105301, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34492558

RESUMO

A combination of several pharmacophores in one molecule has been successfully used for multi-target-directed ligands (MTDL) design. New propargylamine substituted derivatives combined with salicylic and cinnamic scaffolds were designed and synthesized as potential cholinesterases and monoamine oxidases (MAOs) inhibitors. They were evaluated invitro for inhibition of acetyl- (AChE) and butyrylcholinesterase (BuChE) using Ellman's method. All the compounds act as dual inhibitors. Most of the derivatives are stronger inhibitors of AChE, the best activity showed 5-bromo-N-(prop-2-yn-1-yl)salicylamide 1e (IC50 = 8.05 µM). Carbamates (4-bromo-2-[(prop-2-yn-1-yl)carbamoyl]phenyl ethyl(methyl)carbamate 2d and 2,4-dibromo-6-[(prop-2-yn-1-yl)carbamoyl]phenyl ethyl(methyl)carbamate 2e were selective and the most active for BuChE (25.10 and 26.09 µM). 4-Bromo-2-[(prop-2-yn-1-ylimino)methyl]phenol 4a was the most potent inhibitor of MAOs (IC50 of 3.95 and ≈10 µM for MAO-B and MAO-A, respectively) along with a balanced inhibition of both cholinesterases being a real MTDL. The mechanism of action was proposed, and binding modes of the hits were studied by molecular docking on human enzymes. Some of the derivatives also exhibited antioxidant properties. Insilico prediction of physicochemical parameters affirm that the molecules would be active after oral administration and able to reach brain tissue.


Assuntos
Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Inibidores da Monoaminoxidase/farmacologia , Pargilina/análogos & derivados , Propilaminas/farmacologia , Animais , Antioxidantes/síntese química , Antioxidantes/química , Butirilcolinesterase/metabolismo , Células Cultivadas , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Colinesterases/metabolismo , Relação Dose-Resposta a Droga , Electrophorus , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Cavalos , Humanos , Masculino , Estrutura Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Pargilina/síntese química , Pargilina/química , Pargilina/farmacologia , Propilaminas/síntese química , Propilaminas/química , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
15.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34451864

RESUMO

Despite the established treatment regimens, tuberculosis remains an alarming threat to public health according to WHO. Novel agents are needed to overcome the increasing rate of resistance and perhaps achieve eradication. As part of our long-term research on pyrazine derived compounds, we prepared a series of their ortho fused derivatives, N-phenyl- and N-benzyl quinoxaline-2-carboxamides, and evaluated their in vitro antimycobacterial activity. In vitro activity against Mycobacterium tuberculosis H37Ra (represented by minimum inhibitory concentration, MIC) ranged between 3.91-500 µg/mL, with most compounds having moderate to good activities (MIC < 15.625 µg/mL). The majority of the active compounds belonged to the N-benzyl group. In addition to antimycobacterial activity assessment, final compounds were screened for their in vitro cytotoxicity. N-(naphthalen-1-ylmethyl)quinoxaline-2-carboxamide (compound 29) was identified as a potential antineoplastic agent with selective cytotoxicity against hepatic (HepG2), ovarian (SK-OV-3), and prostate (PC-3) cancer cells lines. Molecular docking showed that human DNA topoisomerase and vascular endothelial growth factor receptor could be potential targets for 29.

16.
Eur J Med Chem ; 223: 113668, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34198149

RESUMO

Based on successful antitubercular isoniazid scaffold we have designed its "mee-too" analogues by a combination of this drug linked with substituted anilines through pyruvic acid as a bridge. Lipophilicity important for passive diffusion through impenetrable mycobacterial cell wall was increased by halogen substitution on the aniline. We prepared twenty new 2-(2-isonicotinoylhydrazineylidene)propanamides that were assayed against susceptible Mycobacterium tuberculosis H37Rv, nontuberculous mycobacteria, and also multidrug-resistant tuberculous strains (MDR-TB). All the compounds showed excellent activity not only against Mtb. (minimum inhibitory concentrations, MIC, from ≤0.03 µM), but also against M. kansasii (MIC ≥2 µM). The most active molecules have CF3 and OCF3 substituent in the position 4 on the aniline ring. MIC against MDR-TB were from 8 µM. The most effective derivatives were used for the mechanism of action investigation. The treatment of Mtb. H37Ra with tested compounds led to decreased production of mycolic acids and the strains overproducing InhA were more resistant to them. These results confirm that studied compounds inhibit the enoyl-acyl carrier protein reductase (InhA) in mycobacteria. The compounds did not show any cytotoxic and cytostatic activity for HepG2 cells. The amides can be considered as a promising scaffold for antitubercular drug discovery having better antimicrobial properties than original isoniazid together with a significantly improved pharmaco-toxicological profile.


Assuntos
Amidas/química , Antituberculosos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Oxirredutases/antagonistas & inibidores , Amidas/metabolismo , Amidas/farmacologia , Amidas/uso terapêutico , Compostos de Anilina/química , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Proteínas de Bactérias/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Oxirredutases/metabolismo , Ácido Pirúvico/química , Relação Estrutura-Atividade , Tuberculose/tratamento farmacológico
17.
Bioorg Med Chem ; 41: 116209, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34015704

RESUMO

Hydrazide-hydrazones have been described as a scaffold with antimicrobial and cytotoxic activities as well as iodinated compounds. A resistance rate of bacterial and fungal pathogens has increased considerably. That is why we synthesized and screened twenty-two iodinated hydrazide-hydrazones 1 and 2, ten 1,2-diacylhydrazines 3 and their three reduced analogues 4 for their antibacterial, antifungal, and cytotoxic properties. Hydrazide-hydrazones were prepared by condensation of 4-substituted benzohydrazides with 2-/4-hydroxy-3,5-diiodobenzaldehydes, diacylhydrazines from identical benzohydrazides and 3,5-diiodosalicylic acid via its chloride. These compounds were investigated in vitro against eight bacterial and eight fungal strains. The derivatives were found potent antibacterial agents against Gram-positive cocci including methicillin-resistant Staphylococcus aureus with the lowest values of minimum inhibitory concentrations (MIC) of 7.81 µM. Four compounds inhibited also human pathogenic fungi (MIC of ≥1.95 µM). The derivatives had different degrees of cytotoxicity for HepG2 and HK-2 cell lines (IC50 values from 11.72 and 26.80 µM, respectively). Importantly, normal human cells exhibited lower sensitivity. The apoptotic effect was also investigated. In general, the presence of 3,5-diiodosalicylidene scaffold (compounds 1) is translated into enhanced both antimicrobial and cytotoxic properties whereas its 4-hydroxy isomers 2 share a low biological activity. N'-Benzoyl-2-hydroxy-3,5-diiodobenzohydrazides 3 have a non-homogeneous activity profile. Focusing on 4-substituted benzohydrazide part, the presence of an electron-withdrawing group (F, Cl, CF3, NO2) was found to be beneficial.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antineoplásicos/farmacologia , Hidrazinas/química , Hidrazonas/química , Antibacterianos/química , Antifúngicos/química , Antineoplásicos/química , Bactérias/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Descoberta de Drogas , Fungos/efeitos dos fármacos , Células Hep G2 , Humanos
18.
J Med Chem ; 64(6): 2982-3005, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33719423

RESUMO

Most therapeutic agents used for treating brain malignancies face hindered transport through the blood-brain barrier (BBB) and poor tissue penetration. To overcome these problems, we developed peptide conjugates of conventional and experimental anticancer agents. SynB3 cell-penetrating peptide derivatives were applied that can cross the BBB. Tuftsin derivatives were used to target the neuropilin-1 transport system for selectivity and better tumor penetration. Moreover, SynB3-tuftsin tandem compounds were synthesized to combine the beneficial properties of these peptides. Most of the conjugates showed high and selective efficacy against glioblastoma cells. SynB3 and tandem derivatives demonstrated superior cellular internalization. The penetration profile of the conjugates was determined on a lipid monolayer and Transwell co-culture system with noncontact HUVEC-U87 monolayers as simple ex vivo and in vitro BBB models. Importantly, in 3D spheroids, daunomycin-peptide conjugates possessed a better tumor penetration ability than daunomycin. These conjugates are promising tools for the delivery systems with tunable features.


Assuntos
Antineoplásicos/farmacocinética , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Peptídeos Penetradores de Células/farmacocinética , Glioblastoma/tratamento farmacológico , Oligopeptídeos/farmacocinética , Tuftsina/farmacocinética , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Sistemas de Liberação de Medicamentos , Glioblastoma/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Neuropilina-1/metabolismo , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Ratos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Tuftsina/análogos & derivados , Tuftsina/farmacologia , Células Tumorais Cultivadas
19.
Molecules ; 26(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668452

RESUMO

Based on the broad spectrum of biological activity of hydrazide-hydrazones, trifluoromethyl compounds, and clinical usage of cholinesterase inhibitors, we investigated hydrazones obtained from 4-(trifluoromethyl)benzohydrazide and various benzaldehydes or aliphatic ketones as potential inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). They were evaluated using Ellman's spectrophotometric method. The hydrazide-hydrazones produced a dual inhibition of both cholinesterase enzymes with IC50 values of 46.8-137.7 µM and 19.1-881.1 µM for AChE and BuChE, respectively. The majority of the compounds were stronger inhibitors of AChE; four of them (2-bromobenzaldehyde, 3-(trifluoromethyl)benzaldehyde, cyclohexanone, and camphor-based 2o, 2p, 3c, and 3d, respectively) produced a balanced inhibition of the enzymes and only 2-chloro/trifluoromethyl benzylidene derivatives 2d and 2q were found to be more potent inhibitors of BuChE. 4-(Trifluoromethyl)-N'-[4-(trifluoromethyl)benzylidene]benzohydrazide 2l produced the strongest inhibition of AChE via mixed-type inhibition determined experimentally. Structure-activity relationships were identified. The compounds fit physicochemical space for targeting central nervous systems with no apparent cytotoxicity for eukaryotic cell line together. The study provides new insights into this CF3-hydrazide-hydrazone scaffold.


Assuntos
Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Hidrazinas/química , Hidrazonas/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Sistema Nervoso Central/efeitos dos fármacos , Humanos , Hidrazonas/química , Cinética
20.
Eur J Pharm Sci ; 159: 105732, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33493669

RESUMO

An increasing resistance of human pathogenic bacteria and fungi has become a global health problem. Based on previous reports of 4-(salicylideneamino)benzoic acids, we designed, synthesised and evaluated their me-too analogues as potential antimicrobial agents. Forty imines derived from substituted salicylaldehydes and aminobenzoic acids, 4-aminobenzoic acid esters and 4-amino-N-phenylbenzamide were designed using molecular hybridization and prodrug strategies. The target compounds were synthesized with high yields and characterized by spectral methods. They were investigated against a panel of Gram-positive and Gram-negative bacteria, mycobacteria, yeasts and moulds. The most active imines were tested to determine their cytotoxicity and selectivity in HepG2 cells. Dihalogenosalicylaldehydes-based derivatives showed potent broad-spectrum antimicrobial properties, particularly against Gram-positive bacteria including methicillin-resistant Staphylococcus aureus (minimum inhibitory concentrations, MIC, from 7.81 µM) and Enterococcus faecalis (MIC of ≥15.62 µM), yeasts (MIC from 7.81 µM) and Trichophyton interdigitale mould (MIC of ≥3.90 µM). Methyl 4-[(2-hydroxy-3,5-diiodobenzylidene)amino]benzoate 4h exhibited excellent in vitro activity along with low toxicity to mammalian cells. This compound is selective for staphylococci, Candida spp. and Trichophyton interdigitale. In addition, this imine was evaluated as a potential inhibitor of Gram-positive biofilms. The successful approach used provided some promising derivatives with more advantageous properties than the parent 4-(salicylideneamino)benzoic acids.


Assuntos
Antifúngicos , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Arthrodermataceae , Benzoatos/farmacologia , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA