Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
bioRxiv ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38712049

RESUMO

Mild hyperthermia (MHTh) is often used in combination with chemotherapy and radiotherapy for cancer treatment. In the current study, the effect of MHTh on the enhanced uptake of the FDA-approved chemotherapy drug, liposomal doxorubicin (dox) in syngeneic 4T1 tumors was investigated. Doxorubicin has inherent fluorescence properties having an emission signal at 590 nm upon excitation with a 480 nm laser. A group of mice administered with doxorubicin (dox) were exposed to MHTh (42 °C) for 30 minutes whereas control group given dox did not receive MHTh. Ex vivo optical imaging of harvested tumors confirmed higher uptake of dox in treated versus the control untreated tumors. Confocal microscopy of tumor sections indicates higher fluorescent intensity due to increased accumulation of dox in MHTh-treated compared to untreated tumors. We examined the effect of MHTh to enhance CD8 tumor infiltration, production of interferon-γ (IFN-γ) and expression of programmed death ligand-1 (PD-L1). mRNA in situ hybridization was performed to test for transcripts of CD8, IFN-γ and PD-L1. Results showed that higher expression of CD8 mRNA was observed in MHTh-administered tumors versus untreated cohorts. The signal for IFN-γ and PD-L1 in both groups were not significantly different. Taken together, our findings imply that MHTh can improve tumor uptake of dox. Importantly, our data suggests that MHTh can boost CD8+ T cell infiltration.

2.
Front Oncol ; 13: 1285117, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130991

RESUMO

Introduction: We previously developed a 89Zr-labeled antibody-based immuno-positron emission tomography (immunoPET) tracer targeting interferon gamma (IFNγ), a cytokine produced predominantly by activated T and natural killer (NK) cells during pathogen clearance, anti-tumor immunity, and various inflammatory and autoimmune conditions. The current study investigated [89Zr]Zr-DFO-anti-IFNγ PET as a method to monitor response to immune checkpoint inhibitors (ICIs). Methods: BALB/c mice bearing CT26 colorectal tumors were treated with combined ICI (anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and anti-programmed death 1 (PD-1)). The [89Zr]Zr-DFO-anti-IFNγ PET tracer, generated with antibody clone AN18, was administered on the day of the second ICI treatment, with PET imaging 72 hours later. Tumor mRNA was analyzed by quantitative reverse-transcribed PCR (qRT-PCR). Results: We detected significantly higher intratumoral localization of [89Zr]Zr-DFO-anti-IFNγ in ICI-treated mice compared to untreated controls, while uptake of an isotype control tracer remained similar between treated and untreated mice. Interestingly, [89Zr]Zr-DFO-anti-IFNγ uptake was also elevated relative to the isotype control in untreated mice, suggesting that the IFNγ-specific tracer might be able to detect underlying immune activity in situ in this immunogenic model. In an efficacy experiment, a significant inverse correlation between tracer uptake and tumor burden was also observed. Because antibodies to cytokines often exhibit neutralizing effects which might alter cellular communication within the tumor microenvironment, we also evaluated the impact of AN18 on downstream IFNγ signaling and ICI outcomes. Tumor transcript analysis using interferon regulatory factor 1 (IRF1) expression as a readout of IFNγ signaling suggested there may be a marginal disruption of this pathway. However, compared to a 250 µg dose known to neutralize IFNγ, which diminished ICI efficacy, a tracer-equivalent 50 µg dose did not reduce ICI response rates. Discussion: These results support the use of IFNγ PET as a method to monitor immune activity in situ after ICI, which may also extend to additional T cell-activating immunotherapies.

3.
J Nucl Med ; 64(12): 1858-1864, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918865

RESUMO

Inflammatory bowel disease (IBD), which encompasses ulcerative colitis and Crohn disease, is a chronic inflammatory disorder resulting from an aberrant immune response, though its exact cause is unknown. The current mainstay standard of care for the diagnosis and surveillance of IBD is endoscopy. However, this methodology is invasive and images only superficial tissue structures, revealing very little about the molecular drivers of inflammation. Accordingly, there is an unmet need for noninvasive imaging tools that provide reliable and quantitative visualization of intestinal inflammation with high spatial and molecular specificity. In recent years, several PET agents for imaging IBD have been reported. Such agents allow noninvasive visualization and quantification of dynamic molecular inflammatory processes in vivo. This review focuses on recent advancements in the development of PET tracers for imaging biomarkers of interest in IBD pathogenesis, such as cell-surface molecules that are overexpressed on immune cells and cytokines that perpetuate inflammatory signaling.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Doenças Inflamatórias Intestinais/patologia , Colite Ulcerativa/patologia , Doença de Crohn/diagnóstico por imagem , Doença de Crohn/patologia , Inflamação/diagnóstico por imagem , Tomografia por Emissão de Pósitrons
4.
J Nucl Med ; 64(11): 1806-1814, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37474270

RESUMO

Inflammatory bowel disease (IBD), which includes both Crohn disease and ulcerative colitis, is a relapsing inflammatory disease of the gastrointestinal tract. Long-term chronic inflammatory conditions elevate the patient's risk of colorectal cancer (CRC). Currently, diagnosis requires endoscopy with biopsy. This procedure is invasive and requires a bowel-preparatory regimen, adding to patient burden. Interleukin 12 (IL12) and interleukin 23 (IL23) play key roles in inflammation, especially in the pathogenesis of IBD, and are established therapeutic targets. We propose that imaging of IL12/23 and its p40 subunit in IBD via immuno-PET potentially provides a new noninvasive diagnostic approach. Methods: Our aim was to investigate the potential of immuno-PET to image inflammation in a chemically induced mouse model of colitis using dextran sodium sulfate by targeting IL12/23p40 with a 89Zr-radiolabeled anti-IL12/23p40 antibody. Results: High uptake of the IL12/23p40 immuno-PET agent was exhibited by dextran sodium sulfate-administered mice, and this uptake correlated with increased IL12/23p40 present in the sera. Competitive binding studies confirmed the specificity of the radiotracer for IL12/23p40 in the gastrointestinal tract. Conclusion: These promising results demonstrate the utility of this radiotracer as an imaging biomarker of IBD. Moreover, IL12/23p40 immuno-PET can potentially guide treatment decisions for IBD management.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Interleucina-12/efeitos adversos , Dextranos , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Doenças Inflamatórias Intestinais/tratamento farmacológico , Inflamação , Tomografia por Emissão de Pósitrons , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças
5.
Theranostics ; 13(7): 2057-2071, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153742

RESUMO

Purpose: TRA-1-60 (TRA) is an established transcription factor of embryonic signaling and a well-known marker of pluripotency. It has been implicated in tumorigenesis and metastases, is not expressed in differentiated cells, which makes it an appealing biomarker for immunopositron emission tomography (immunoPET) imaging and radiopharmaceutical therapy (RPT). Herein, we explored the clinical implications of TRA in prostate cancer (PCa), examined the potential of TRA-targeted PET to specifically image TRA+ cancer stem cells (CSCs) and assessed response to the selective ablation of PCa CSCs using TRA-targeted RPT. Experimental Design: First, we assessed the relationship between TRA (PODXL) copy number alterations (CNA) and survival using publicly available patient databases. The anti-TRA antibody, Bstrongomab, was radiolabeled with Zr-89 or Lu-177 for immunoPET imaging and RPT in PCa xenografts. Radiosensitive tissues were collected to assess radiotoxicity while excised tumors were examined for pathologic treatment response. Results: Patients with tumors having high PODXL CNA exhibited poorer progression-free survival than those with low PODXL, suggesting that it plays an important role in tumor aggressiveness. TRA-targeted immunoPET imaging specifically imaged CSCs in DU-145 xenografts. Tumors treated with TRA RPT exhibited delayed growth and decreased proliferative activity, marked by Ki-67 immunohistochemistry. Aside from minor weight loss in select animals, no significant signs of radiotoxicity were observed in the kidneys or livers. Conclusions: We successfully demonstrated the clinical significance of TRA expression in human PCa, engineered and tested radiotheranostic agents to image and treat TRA+ prostate CSCs. Ablation of TRA+ CSCs blunted PCa growth. Future studies combining CSC ablation with standard treatment will be explored to achieve durable responses.


Assuntos
Células-Tronco Pluripotentes , Neoplasias da Próstata , Masculino , Animais , Humanos , Radioisótopos , Zircônio , Tomografia Computadorizada por Raios X , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/metabolismo , Compostos Radiofarmacêuticos , Células-Tronco Pluripotentes/metabolismo , Linhagem Celular Tumoral
6.
J Labelled Comp Radiopharm ; 66(7-8): 180-188, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37118900

RESUMO

The radiotracer 1-(2-[18 F]fluoroethyl)-L-tryptophan (L-[18 F]FETrp or [18 F]FETrp) is a substrate of indoleamine 2,3-dioxygenase, the initial and key enzyme of the kynurenine pathway associated with tumoral immune resistance. In preclinical positron emission tomography studies, [18 F]FETrp is highly accumulated in a wide range of primary and metastatic cancers, such as lung cancer, prostate cancer, and gliomas. However, the clinical translation of this radiotracer into the first-in-human trial has not been reported, partially due to its racemization during radiofluorination which renders the purification of the final product challenging. However, efficient purification is essential for human studies in order to assure radiochemical and enantiomeric purity. In this work, we report a fully automated radiosynthesis of [18 F]FETrp on a Synthra RNPlus research module, including a one-pot two steps radiosynthesis, dual independent chiral and reverse-phase semipreparative high-performance liquid chromatography purifications, and solid-phase extraction-assisted formulation. The presented approach has led to its Investigational New Drug application and approval that allows the testing of this tracer in humans.


Assuntos
Neoplasias Pulmonares , Neoplasias da Próstata , Masculino , Humanos , Triptofano , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/química , Radioisótopos de Flúor/química
7.
iScience ; 26(4): 106320, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36968078

RESUMO

HER2-targeted therapy has improved breast cancer survival, but treatment resistance and disease prevention remain major challenges. Genes that enable HER2/Neu oncogenesis are the next intervention targets. A bioinformatics discovery platform of HER2/Neu-expressing Diversity Outbred (DO) F1 Mice was established to identify cancer-enabling genes. Quantitative Trait Loci (QTL) associated with onset ages and growth rates of spontaneous mammary tumors were sought. Twenty-six genes in 3 QTL contain sequence variations unique to the genetic backgrounds that are linked to aggressive tumors and 21 genes are associated with human breast cancer survival. Concurrent identification of TSC22D3, a transcription factor, and its target gene LILRB4, a myeloid cell checkpoint receptor, suggests an immune axis for regulation, or intervention, of disease. We also investigated TIEG1 gene that impedes tumor immunity but suppresses tumor growth. Although not an actionable target, TIEG1 study revealed genetic regulation of tumor progression, forming the basis of the genetics-based discovery platform.

8.
Mol Imaging Biol ; 25(1): 240-264, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36745354

RESUMO

The WMIS Education Committee (2019-2022) reached a consensus that white papers on molecular imaging could be beneficial for practitioners of molecular imaging at their early career stages and other scientists who are interested in molecular imaging. With this consensus, the committee plans to publish a series of white papers on topics related to the daily practice of molecular imaging. In this white paper, we aim to provide practical guidance that could be helpful for optical molecular imaging, particularly for small molecule probe development and validation in vitro and in vivo. The focus of this paper is preclinical animal studies with small-molecule optical probes. Near-infrared fluorescence imaging, bioluminescence imaging, chemiluminescence imaging, image-guided surgery, and Cerenkov luminescence imaging are discussed in this white paper.


Assuntos
Imagem Molecular , Imagem Óptica , Animais , Imagem Óptica/métodos , Corantes Fluorescentes
9.
Addict Neurosci ; 42022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36540409

RESUMO

Repeated cocaine alters neuronal function in the nucleus accumbens (NAc), a brain region involved in cocaine taking, and in hippocampus (HC), known for contextual and associative learning. [18F]TFAHA is a histone deacetylase (HDAC) class IIa-specific radiotracer for positron emission tomography (PET)-imaging developed by our group to study epigenetic mechanisms. Here, [18F]TFAHA was used to conduct PET-imaging coupled with computed tomography (CT) of rat brains at baseline and after repeated cocaine intravenous self-administration (cocaine-IVSA) in low-intake versus high-intake cocaine groups. A 3 h-access FR1-schedule of cocaine-IVSA (0.5 mg/kg/infusion) for 12 continuous days was used with male Sprague Dawley rats following jugular vein catheterization. PET/CT neuroimaging with [18F]TFAHA was acquired in a dynamic mode over 40 min post-radiotracer administration at baseline and on day 12 of cocaine-IVSA using a longitudinal, repeated design. This study shows that high-cocaine intake significantly decreases class IIa HDAC expression-activity in NAc, while low-cocaine intake significantly decreases expression-activity in HC in male rats. These findings suggest the individual rats with low-cocaine intake had epigenetic changes in HC, where drug-associative changes occur. Alternatively, individuals with high-cocaine intake had robust epigenetic changes in NAc, where rewared-related behaviors originate. These findings are the first longitudinal data obtained in vivo to implicate class IIa HDACs in the persistent behavioral effects of cocaine. Furthermore, our results are consistent with published research implicating class IIa HDACs in cocaine-induced brain changes and studies suggesting a relationship between an individual's drug-taking behavior and regional pattern of epigenetic changes in the brain.

11.
Nucl Med Biol ; 114-115: 162-167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35753939

RESUMO

INTRODUCTION: Interferon-γ (IFN-γ) is an appealing target to evaluate immune response in cancer immunotherapy as it is a hallmark of an active immune system. Imaging and detection via immunopositron emission tomography (immunoPET) of this soluble cytokine has been made feasible using a 89Zr-labeled (t 1/2 ~ 3.27 d) monoclonal antibody (mAb). Because of its size, using a full-length mAb as an imaging vector is not ideal for repeat serial imaging because of its prolonged blood pool residency and tumor accumulation resulting in lengthier wait times between administration and imaging. This consequently impacts the potential to image a dynamic immune response in real time. This work compares 89Zr-labeled diabodies (Db) designed with variable linker lengths between the VH and VL regions with the goal of selecting a lead Db for future studies. METHODS AND RESULTS: Four Db fragments with various linker lengths (HL-n, n = 7-13 amino acids) were each conjugated to desferrioxamine (DFO). The number of attached chelates was analyzed via mass spectrometry with all immunoconjugates exhibiting one unit of DFO attached. Db-DFO conjugates were subsequently radiolabeled with zirconium-89. All constructs radiolabeled with high yields. Each radioimmunoconjugate was tested for reactivity to IFN-γ. All tracers except for [89Zr]Zr-DFO-NCS-anti-IFN-γ HL-9 exhibited comparable immunoreactivities (>90 %) to the radiolabeled parent mAb (95.8 %). At 24 h post-labeling, the IRF values were retained except for the HL-13 construct. Imaging scans and tissue distribution studies acquired in mice bearing CT26 syngeneic colorectal tumors between 1 and 24 h post-tracer administration demonstrated variable clearance kinetics and tumor localization of each radiotracer. HL-7 had higher binding in non-tumor tissues compared to HL-11 and HL-13 at 3 h p.i. Competitive binding studies versus unmodified parent mAb (AN-18) demonstrated blocking of radiolabeled HL-11 and HL-13. [89Zr]Zr-DFO-NCS-anti-IFN-γ HL-7 was inadequately blocked. CONCLUSION: Despite nuanced differences in linker lengths, our data demonstrates that [89Zr]Zr-DFO-NCS-anti-IFN-γ HL-11 exhibited the best radiotracer properties for the assessment of IFN-γ production in vivo. Work is currently underway to test the potential of using shorter-lived isotopes, like copper-64 (t1/2 ~ 12.7 h) to match pharmacokinetics and half-lives.


Assuntos
Imunoconjugados , Neoplasias , Animais , Camundongos , Interferon gama , Desferroxamina/química , Tomografia por Emissão de Pósitrons/métodos , Zircônio/química , Imunoconjugados/química , Anticorpos Monoclonais/química , Linhagem Celular Tumoral
12.
Front Immunol ; 13: 870110, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634303

RESUMO

The immune cytokine interleukin-12 (IL-12) is involved in cancer initiation and progression, autoimmunity, as well as graft versus host disease. The ability to monitor IL-12 via imaging may provide insight into various immune processes, including levels of antitumor immunity, inflammation, and infection due to its functions in immune signaling. Here, we report the development and preclinical evaluation of an antibody-based IL-12-specific positron emission tomography (PET) tracer. To mimic localized infection and stimulate IL-12 production, BALB/c mice were administered lipopolysaccharide (LPS) intramuscularly. [89Zr]Zr-DFO-αIL12 tracer was given one hour post LPS administration and PET images were taken after 5, 24, 48, and 72 hours. We observed significantly higher uptake in LPS-treated mice as compared to controls. Biodistribution of the tracer was evaluated in a separate cohort of mice, where tracer uptake was elevated in muscle, spleen, lymph nodes, and intestines after LPS administration. To evaluate the utility of [89Zr]Zr-DFO-αIL12 as an indicator of antigen presenting cell activation after cancer immunotherapy, we compared PET imaging with and without intratumoral delivery of oncolytic adenovirus expressing granulocyte-macrophage colony-stimulating factor (Adv/GM-CSF), which we have shown promotes anti-tumor immunity. BALB/c mice were inoculated orthotopically with the mouse mammary carcinoma line TUBO. Once TUBO tumors reached a volume of ~50 mm3, mice were treated with either three intratumoral injections of 108 PFU Adv/GM-CSF or vehicle control, given every other day. Upon the last dose, [89Zr]Zr-DFO-αIL12 was injected intravenously and 72 hours later all mice were imaged via PET. Tumor-specific uptake of [89Zr]Zr-DFO-αIL12 was higher in Adv/GM-CSF treated mice versus controls. Tissues were harvested after imaging, and elevated levels of macrophages and CD8+ Tc cells were detected in Adv/GM-CSF treated tumors by immunohistochemistry. We validated that IL-12 expression was induced after Adv/GM-CSF by qRT-PCR. Importantly, expression of genes activated by IL-12 (IFNγ, TNFα, and IL-18) were unaffected after IL-12 imaging relative to mice receiving an IgG control tracer, suggesting the tracer antibody does not significantly disrupt signaling. Our results indicate that targeting soluble cytokines such as IL-12 by PET imaging with antibody tracers may serve as a noninvasive method to evaluate the function of the immune milieu in situ.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Interleucina-12 , Adenoviridae , Animais , Citocinas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Imunidade , Interleucina-12/genética , Lipopolissacarídeos , Camundongos , Camundongos Endogâmicos BALB C , Distribuição Tecidual
13.
Mol Imaging Biol ; 24(1): 1-7, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34542804

RESUMO

In oncology, biomarker research aimed to provide insights on cancer biology via positron emission tomography (PET) and single photon emission tomography (SPECT) imaging has seen an incredible growth in the past two decades. Despite the increased number of publications on PET/SPECT radiopharmaceuticals, the field lacked standardization of in vitro and in vivo parameters necessary for the characterization of any radiotracer. Through the efforts of the World Molecular Imaging Society Education Committee, this white paper lays down validation studies that are essential to chemically and biologically characterize new radiopharmaceuticals derived from small molecules, peptides or proteins. Finally, a brief overview of the steps toward translation is also presented.Herein, we discuss the following: Chemistry and radiochemistry metrics to establish the identity of the imaging agent. In vitro and in vivo studies to examine the radiotracer's mechanism of action, which includes target specificity, pharmacokinetics and in vivo metabolism.


Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Oncologia , Tomografia por Emissão de Pósitrons/métodos , Radioquímica , Compostos Radiofarmacêuticos/química , Tomografia Computadorizada de Emissão de Fóton Único
14.
Mol Cancer Ther ; 20(10): 1836-1845, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34253597

RESUMO

Metastatic pancreatic neuroendocrine tumors (PNET) remain an unmet clinical problem. Chronologic treatment in PNETs includes observation (watchful protocol), surgery, targeted therapy, and chemotherapy. However, increasing evidence illustrates that the outcomes of targeted therapeutic options for the treatment of advanced PNETs show minimal response. The FDA-approved mTOR inhibitor everolimus does not shrink these tumors. It only delays disease progression in a subset of patients, while a significant fraction acquires resistance and shows disease progression. Thus, there is a need for more effective targeted approaches to sensitize PNETs to everolimus for better treatment outcomes. Previously, we showed that mTOR regulator p21 activated kinase 4 (PAK4) and nicotinamide adenine dinucleotide biosynthesis enzyme nicotinamide phosphoribosyl transferase (NAMPT) were aberrantly expressed in PNET tissue and promoted everolimus resistance. In this report, we demonstrate that PAK4-NAMPT dual inhibitor KPT-9274 can synergize with everolimus (growth inhibition, colony suppression, and glucose uptake assays). KPT-9274-everolimus disrupted spheroid formation in multiple PNET models. Molecular analysis showed alteration of mTORC2 through downregulation of RICTOR as a mechanism supporting synergy with everolimus in vitro KPT-9274 suppressed ß-catenin activity via inhibition of PAK4, highlighting the cross-talk between Rho GTPases and Wnt signaling in PNETs. KPT-9274, given at 150 mg/kg in combination with sub-MTD everolimus (2.5 mg/kg), significantly suppressed two PNET-derived xenografts. These studies bring forward a well-grounded strategy for advanced PNETs that fail to respond to single-agent everolimus.


Assuntos
Acrilamidas/farmacologia , Aminopiridinas/farmacologia , Citocinas/antagonistas & inibidores , Everolimo/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Tumores Neuroendócrinos/tratamento farmacológico , Nicotinamida Fosforribosiltransferase/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Quinases Ativadas por p21/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Quimioterapia Combinada , Feminino , Humanos , Camundongos , Camundongos Endogâmicos ICR , Camundongos SCID , Tumores Neuroendócrinos/metabolismo , Tumores Neuroendócrinos/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancers (Basel) ; 13(11)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34204940

RESUMO

Pancreatic cancer is the fourth leading cause of cancer death among men and women in the United States, and pancreatic ductal adenocarcinoma (PDAC) accounts for more than 90% of pancreatic cancer cases. PDAC is one of the most lethal gastrointestinal malignancies with an overall five-year survival rate of ~10%. Developing effective therapeutic strategies against pancreatic cancer is a great challenge. Novel diagnostic, prognostic, and therapeutic strategies are an immediate necessity to increase the survival of pancreatic cancer patients. So far, studies have demonstrated microRNAs (miRNAs) as sensitive biomarkers because of their significant correlation with disease development and metastasis. The miRNAs have been shown to be more stable inside membrane-bound vesicles in the extracellular environment called exosomes. Varieties of miRNAs are released into the body fluids via exosomes depending on the normal physiological or pathological conditions of the body. In this review, we discuss the recent findings on the diagnostic, prognostic, and therapeutic roles of exosomal miRNAs in pancreatic cancer.

16.
Theranostics ; 11(13): 6293-6314, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995659

RESUMO

Radioimmunotherapy (RIT) is FDA-approved for the clinical management of liquid malignancies, however, its use for solid malignancies remains a challenge. The putative benefit of RIT lies in selective targeting of antigens expressed on the tumor surface using monoclonal antibodies, to systemically deliver cytotoxic radionuclides. The past several decades yielded dramatic improvements in the quality, quantity, recent commercial availability of alpha-, beta- and Auger Electron-emitting therapeutic radiometals. Investigators have created new or improved existing bifunctional chelators. These bifunctional chelators bind radiometals and can be coupled to antigen-specific antibodies. In this review, we discuss approaches to develop radiometal-based RITs, including the selection of radiometals, chelators and antibody platforms (i.e. full-length, F(ab')2, Fab, minibodies, diabodies, scFv-Fc and nanobodies). We cite examples of the performance of RIT in the clinic, describe challenges to its implementation, and offer insights to address gaps toward translation.


Assuntos
Radioimunoterapia/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/uso terapêutico , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Quelantes/administração & dosagem , Quelantes/metabolismo , Química Click , Ensaios Clínicos como Assunto , Fracionamento da Dose de Radiação , Sistemas de Liberação de Medicamentos , Previsões , Humanos , Fragmentos Fab das Imunoglobulinas/administração & dosagem , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Linfoma não Hodgkin/radioterapia , Camundongos , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias Experimentais/diagnóstico por imagem , Neoplasias Experimentais/radioterapia , Especificidade de Órgãos , Medicina de Precisão , Tolerância a Radiação , Compostos Radiofarmacêuticos/administração & dosagem , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Anticorpos de Cadeia Única/administração & dosagem , Anticorpos de Cadeia Única/uso terapêutico , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/uso terapêutico , Radioisótopos de Ítrio/administração & dosagem , Radioisótopos de Ítrio/uso terapêutico
17.
Front Immunol ; 11: 1067, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582173

RESUMO

The past two decades have brought impressive advancements in immune modulation, particularly with the advent of both cancer immunotherapy and biologic therapeutics for inflammatory conditions. However, the dynamic nature of the immune response often complicates the assessment of therapeutic outcomes. Innovative imaging technologies are designed to bridge this gap and allow non-invasive visualization of immune cell presence and/or function in real time. A variety of anatomical and molecular imaging modalities have been applied for this purpose, with each option providing specific advantages and drawbacks. Anatomical methods including magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound provide sharp tissue resolution, which can be further enhanced with contrast agents, including super paramagnetic ions (for MRI) or nanobubbles (for ultrasound). Conjugation of the contrast material to an antibody allows for specific targeting of a cell population or protein of interest. Protein platforms including antibodies, cytokines, and receptor ligands are also popular choices as molecular imaging agents for positron emission tomography (PET), single-photon emission computerized tomography (SPECT), scintigraphy, and optical imaging. These tracers are tagged with either a radioisotope or fluorescent molecule for detection of the target. During the design process for immune-monitoring imaging tracers, it is important to consider any potential downstream physiologic impact. Antibodies may deplete the target cell population, trigger or inhibit receptor signaling, or neutralize the normal function(s) of soluble proteins. Alternatively, the use of cytokines or other ligands as tracers may stimulate their respective signaling pathways, even in low concentrations. As in vivo immune imaging is still in its infancy, this review aims to describe the modalities and immunologic targets that have thus far been explored, with the goal of promoting and guiding the future development and application of novel imaging technologies.


Assuntos
Sistema Imunitário/diagnóstico por imagem , Imagem Molecular/métodos , Imagem Óptica/métodos , Animais , Anticorpos/imunologia , Rastreamento de Células , Citocinas/imunologia , Genes Reporter , Humanos , Sistema Imunitário/citologia , Ligantes , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
18.
Mol Pharm ; 17(6): 2099-2108, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32330387

RESUMO

The N-linked biantennary glycans on the heavy chain of immunoglobulin G (IgG) antibodies (mAbs) are instrumental in the recognition of the Fc region by Fc-gamma receptors (FcγR). In the case of full-length mAb-based imaging tracers targeting immune cell populations, these Fc:FcγR interactions can potentially deplete effector cells responsible for tumor clearance. To bypass this problem, we hypothesize that the enzymatic removal of the Fc glycans will disrupt Fc:FcγR interactions and spare tracer-targeted immune cells from depletion during immunopositron emission tomography (immunoPET) imaging. Herein, we compared the in vitro and in vivo properties of 89Zr-radiolabeled CD8-specific murine mAb (anti-CD8wt, clone 2.43), a well-known depleting mAb, and its deglycosylated counterpart (anti-CD8degly). Deglycosylation was achieved via enzymatic treatment with the peptide: N-glycosidase F (PNGaseF). Both anti-CD8wt and anti-CD8degly mAbs were conjugated to p-SCN-Bn-desferrioxamine (DFO) and labeled with 89Zr. Bindings of both DFO-conjugated mAbs to FcγR and CD8+ splenocytes were compared. In vivo imaging and distribution studies were conducted to examine the specificity and pharmacokinetics of the radioimmunoconjugates in tumor-naive and CT26 colorectal tumor-bearing mice. Ex vivo analysis of CD8+ T cell population in spleens and tumors obtained postimaging were measured via flow cytometry and qRT-PCR. The removal of the Fc glycans from anti-CD8wt was confirmed via SDS-PAGE. A reduction in FcγR interaction was exhibited by DFO-anti-CD8degly, while its binding to CD8 remained unchanged. Tissue distribution showed similar pharmacokinetics of [89Zr]Zr-DFO-anti-CD8degly and the wt radioimmunoconjugate. In vivo blocking studies further demonstrated retained specificity of the deglycosylated radiotracer for CD8. From the imaging studies, no difference in accumulation in both spleens and tumors was observed between both radiotracers. Results from the flow cytometry analysis confirmed depletion of CD8+ T cells in spleens of mice administered with DFO-anti-CD8wt, whereas an increase in CD8+ T cells was shown with DFO-anti-CD8degly. No statistically significant difference in tumor infiltrating CD8+ T cells was observed in cohorts administered with the probes when compared to control unmodulated mice. CD8 mRNA levels from excised tumors showed increased transcripts of the antigen in mice administered with [89Zr]Zr-DFO-anti-CD8degly compared to mice imaged with [89Zr]Zr-DFO-anti-CD8wt. In conclusion, the removal of Fc glycans offers a straightforward approach to develop full length antibody-based imaging probes specifically for detecting CD8+ immune molecules with no consequential depletion of their target cell population in peripheral tissues.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Animais , Linhagem Celular , Citometria de Fluxo , Humanos , Imunoconjugados/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Tomografia por Emissão de Pósitrons , Radioquímica
19.
Breast Cancer Res ; 22(1): 37, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32295603

RESUMO

BACKGROUND: At least 50% of triple negative breast cancer (TNBC) overexpress the epidermal growth factor receptor, EGFR, which paved the way for clinical trials investigating its blockade. Outcomes remained dismal stemming from mechanisms of resistance particularly the nuclear cycling of EGFR, which is enhanced by Src activation. Attenuation of Src reversed nuclear translocation, restoring EGFR to the cell surface. Herein, we hypothesize that changes in cellular distribution of EGFR upon Src inhibition with dasatinib can be annotated through the EGFR immunopositron emission tomography (immunoPET) radiotracer, [89Zr]Zr-cetuximab. METHODS: Nuclear and non-nuclear EGFR levels of dasatinib-treated vs. untreated MDA-MB-231 and MDA-MB-468 cells were analyzed via immunoblots. Both treated and untreated cells were exposed to [89Zr]Zr-cetuximab to assess binding at 4 °C and 37 °C. EGFR-positive MDA-MB-231, MDA-MB-468, and a patient-derived xenograft were treated with dasatinib or vehicle followed by cetuximab PET imaging to compare EGFR levels. After imaging, the treated mice were separated into two groups: one cohort continued with dasatinib with the addition of cetuximab while the other cohort received dasatinib alone. Correlations between the radiotracer uptake vs. changes in tumor growth and EGFR expression from immunoblots were analyzed. RESULTS: Treated cells displayed higher binding of [89Zr]Zr-cetuximab to the cell membrane at 4 °C and with greater internalized activity at 37 °C vs. untreated cells. In all tumor models, higher accumulation of the radiotracer in dasatinib-treated groups was observed compared to untreated tumors. Treated tumors displayed significantly decreased pSrc (Y416) with retained total Src levels compared to control. In MDA-MB-468 and PDX tumors, the analysis of cetuximab PET vs. changes in tumor volume showed an inverse relationship where high tracer uptake in the tumor demonstrated minimal tumor volume progression. Furthermore, combined cetuximab and dasatinib treatment showed better tumor regression compared to control and dasatinib-only-treated groups. No benefit was achieved in MDA-MB-231 xenografts with the addition of cetuximab, likely due to its KRAS-mutated status. CONCLUSIONS: Cetuximab PET can monitor effects of dasatinib on EGFR cellular distribution and potentially inform treatment response in wild-type KRAS TNBC.


Assuntos
Proliferação de Células , Cetuximab/metabolismo , Dasatinibe/farmacologia , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Zircônio/metabolismo , Animais , Antineoplásicos Imunológicos/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/metabolismo , Feminino , Humanos , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Mol Pharm ; 17(4): 1139-1147, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32069422

RESUMO

TRA-1-60 (TRA) is a cell-surface antigen implicated in drug resistance, relapse, and recurrence. Its expression has been reported in breast, prostate, pancreatic, ovarian tumors, and follicular lymphoma, which paved the development of the therapeutic antibody, Bstrongomab (Bsg), and its drug conjugates. Because patient selection is critical to achieve clinical benefit, a noninvasive imaging agent to select TRA+ lesions in patients is needed. Herein, we report the development of the immunopositron emission tomography (immunoPET) radiotracer 89Zr-radiolabeled Bsg and its potential to delineate TRA+ tumors. Bsg was conjugated to the bifunctional chelator desferrioxamine (DFO) and radiolabeled with [89Zr]Zr-oxalate. [89Zr]Zr-DFO-Bsg was characterized in vitro and evaluated in vivo for uptake and specificity in high and low TRA-expressing BxPC-3 pancreatic and PC-3 prostate cancer models, respectively. Uptake was compared against [89Zr]Zr-DFO-IgG, a nonspecific control radiotracer. Immunohistochemical (IHC) staining of patient cancer tissues using Bsg was performed to explore its clinical significance. A specific activity of 0.18 ± 0.01 GBq/mg (4.8 ± 0.3 mCi/mg) was obtained for [89Zr]Zr-DFO-Bsg. BxPC-3 xenografts exhibited three-fold higher radiotracer uptake compared to [89Zr]Zr-DFO-IgG. Competitive saturation studies using BxPC-3 xenografts further confirmed tracer specificity. The TRA-specific probe had lower accumulation in PC-3 xenografts. Ex vivo autoradiographs correlated with TRA expression from the histopathology of the resected tumor xenografts. Additionally, patient cancer tissues demonstrated positive staining with Bsg with metastatic lesions exhibiting the highest staining. This study demonstrates the potential of [89Zr]Zr-DFO-Bsg as an imaging agent for noninvasive detection of TRA+ tumors.


Assuntos
Antígenos de Superfície/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias da Próstata/metabolismo , Proteoglicanas/metabolismo , Radioisótopos/metabolismo , Zircônio/metabolismo , Animais , Linhagem Celular Tumoral , Quelantes/metabolismo , Desferroxamina/metabolismo , Humanos , Imunoconjugados/metabolismo , Masculino , Camundongos , Camundongos Nus , Células PC-3 , Tomografia por Emissão de Pósitrons/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA