Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 21(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38132955

RESUMO

The fungal strain BC17 was isolated from sediments collected in the intertidal zone of the inner Bay of Cadiz and characterized as Emericellopsis maritima. On the basis of the one strain-many compounds (OSMAC) approach, four new eremophilane-type sesquiterpenes (1-4), together with thirteen known derivatives (5-17) and two reported diketopiperazines (18, 19), were isolated from this strain. The chemical structures and absolute configurations of the new compounds were determined through extensive NMR and HRESIMS spectroscopic studies and ECD calculation. Thirteen of the isolated eremophilanes were examined for cytotoxic and antimicrobial activities. PR toxin (16) exhibited cytotoxic activity against HepG2, MCF-7, A549, A2058, and Mia PaCa-2 human cancer cell lines with IC50 values ranging from 3.75 to 33.44 µM. (+)-Aristolochene (10) exhibited selective activity against the fungal strains Aspergillus fumigatus ATCC46645 and Candida albicans ATCC64124 at 471 µM.


Assuntos
Anti-Infecciosos , Antineoplásicos , Hypocreales , Sesquiterpenos , Humanos , Sesquiterpenos Policíclicos , Sesquiterpenos/química , Antineoplásicos/química , Sedimentos Geológicos/microbiologia , Anti-Infecciosos/química , Estrutura Molecular
2.
Front Microbiol ; 14: 1125639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36922968

RESUMO

Marine microorganisms account for over 90% of ocean biomass and their diversity is believed to be the result of their ability to adapt to extreme conditions of the marine environment. Biotransformations are used to produce a wide range of high-added value materials, and marine-derived fungi have proven to be a source of new enzymes, even for activities not previously discovered. This review focuses on biotransformations by fungi from marine environments, including bioremediation, from the standpoint of the chemical structure of the substrate, and covers up to September 2022.

3.
Molecules ; 27(19)2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36234892

RESUMO

Current needs in finding new antibiotics against emerging multidrug-resistant superbugs are pushing the scientific community into coming back to Nature for the discovery of novel active structures. Recently, a survey of halophilic actinomyectes from saline substrates of El Saladar del Margen, in the Cúllar-Baza depression (Granada, Spain), led us to the isolation and identification of 108 strains from the rhizosphere of the endemic plant Limonium majus. Evaluation of the potential of these strains to produce new anti-infective agents against superbug pathogens was performed through fermentation in 10 different culture media using an OSMAC approach and assessment of the antibacterial and antifungal properties of their acetone extracts. The study allowed the isolation of two novel antibiotic compounds, kribbellichelin A (1) and B (2), along with the known metabolites sandramycin (3), coproporphyrin III (4), and kribelloside C (5) from a bioassay-guided fractionation of scaled-up active extracts of the Kribbella sp. CA-293567 strain. The structures of the new molecules were elucidated by ESI-qTOF-MS/MS, 1D and 2D NMR, and Marfey's analysis for the determination of the absolute configuration of their amino acid residues. Compounds 1-3 and 5 were assayed against a panel of relevant antibiotic-resistant pathogenic strains and evaluated for cytotoxicity versus the human hepatoma cell line HepG2 (ATCC HB-8065). Kribbellichelins A (1) and B (2) showed antimicrobial activity versus Candida albicans ATCC-64124, weak potency against Acinetobacter baumannii MB-5973 and Pseudomonas aeruginosa MB-5919, and an atypical dose-dependent concentration profile against Aspergillus fumigatus ATCC-46645. Sandramycin (3) confirmed previously reported excellent growth inhibition activity against MRSA MB-5393 but also presented clear antifungal activity against C. albicans ATCC-64124 and A. fumigatus ATCC-46645 associated with lower cytotoxicity observed in HepG2, whereas Kribelloside C (5) displayed high antifungal activity only against A. fumigatus ATCC-46645. Herein, we describe the processes followed for the isolation, structure elucidation, and potency evaluation of these two new active compounds against a panel of human pathogens as well as, for the first time, the characterization of the antifungal activities of sandramycin (3).


Assuntos
Actinomycetales , Anti-Infecciosos , Acetona , Aminoácidos , Antibacterianos/química , Anti-Infecciosos/farmacologia , Antifúngicos/química , Candida albicans , Meios de Cultura , Humanos , Testes de Sensibilidade Microbiana , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA