Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Prostaglandins Other Lipid Mediat ; 169: 106771, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37657597

RESUMO

The transient receptor potential vanilloid 1 (TRPV1) channel is a ligand-gated, nonselective cation channel expressed in primary sensory neurons, which has a role in nociception. The channel is activated by noxious heat, pH, capsaicin and other endogenous vanilloids, including lipid mediators (LMs) enzymatically derived from polyunsaturated fatty acids (PUFA). Although capsaicin binding to TRPV1 has been well characterized, the molecular mechanism by which endogenous LM ligands bind the channel is not well understood. In this study, we characterized the binding interactions for 13 endogenous LM ligands, within the vanilloid pocket of TRPV1 using a molecular dynamics (MD) approach. We observed that LM ligands can be grouped based on their structure and affinity for the vanilloid pocket. Furthermore, the position as well as the number of the polar groups on the LM ligand directly impact binding stability through various polar interactions with the protein. As an additional control we performed docking experiments of the PUFA precursor molecules linoleic acid and arachidonic acid which failed to form stable interactions within the vanilloid pocket. While LM ligands with similar structures displayed similar binding interactions, there were notable exceptions in the case of 20-HETE, 9-HODE, and 9,10-DiHOME. Our study offers new insights into the mechanisms involved in TRPV1 activation by endogenous LM ligands. The observed binding interactions may assist in the interpretation of in vivo and in vitro pharmacodynamics studies.


Assuntos
Capsaicina , Simulação de Dinâmica Molecular , Capsaicina/farmacologia , Capsaicina/química , Ligantes
2.
Microorganisms ; 11(7)2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37513004

RESUMO

Pathogens that play a role in the development and progression of periodontitis have gained significant attention due to their implications in the onset of various systemic diseases. Periodontitis is characterized as an inflammatory disease of the gingival tissue that is mainly caused by bacterial pathogens. Among them, Porphyromonas gingivalis, Treponema denticola, Fusobacterium nucleatum, Aggregatibacter actinomycetemcomitans, and Tannerella forsythia are regarded as the main periodontal pathogens. These pathogens elicit the release of cytokines, which in combination with their virulence factors induce chronic systemic inflammation and subsequently impact neural function while also altering the permeability of the blood-brain barrier. The primary objective of this review is to summarize the existing information regarding periodontal pathogens, their virulence factors, and their potential association with neuroinflammation and neurodegenerative diseases. We systematically reviewed longitudinal studies that investigated the association between periodontal disease and the onset of neurodegenerative disorders. Out of the 24 studies examined, 20 showed some degree of positive correlation between periodontal disease and neurodegenerative disorders, with studies focusing on cognitive function demonstrating the most robust effects. Therefore, periodontal pathogens might represent an exciting new approach to develop novel preventive treatments for neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA