Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Pharm Bioallied Sci ; 15(Suppl 2): S1040-S1042, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37693979

RESUMO

Postnatal dental pulp tissues give the proper justification of the stem cell assimilation and characteristic of the multipotent of the stem cells. Researchers use an in vitro isolation process for clarifying the different stages of staining and cell division. Data collected from various sources helps in understanding how the stem cells help in tissue regeneration. It highlights the immunological phenotypes with the synthesis with cDNA for mentioning molecular immunology. Study also mentions the mitochondrial consistency to measure the potentiality regarding the immunology and the way it differs from 0 to 21 days. Researchers also mention the way for the future development by utilizing the key advantages and definite multipotent of the dental stem cells.

2.
Contemp Clin Dent ; 8(1): 81-89, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28566856

RESUMO

BACKGROUND: Growing evidence shows that dental pulp (DP) tissues could be a potential source of adult stem cells for the treatment of devastating neurological diseases and several other conditions. AIMS: Exploration of the expression profile of several key molecular markers to evaluate the molecular dynamics in undifferentiated and differentiated DP-derived stem cells (DPSCs) in vitro. SETTINGS AND DESIGN: The characteristics and multilineage differentiation ability of DPSCs were determined by cellular and molecular kinetics. DPSCs were further induced to form adherent (ADH) and non-ADH (NADH) neurospheres under serum-free condition which was further induced into neurogenic lineage cells and characterized for their molecular and cellular diversity at each stage. STATISTICAL ANALYSIS USED: Statistical analysis used one-way analysis of variance, Student's t-test, Livak method for relative quantification, and R programming. RESULTS: Immunophenotypic analysis of DPSCs revealed >80% cells positive for mesenchymal markers CD90 and CD105, >70% positive for transferring receptor (CD71), and >30% for chemotactic factor (CXCR3). These cells showed mesodermal differentiation also and confirmed by specific staining and molecular analysis. Activation of neuronal lineage markers and neurogenic growth factors was observed during lineage differentiation of cells derived from NADH and ADH spheroids. Greater than 80% of cells were found to express ß-tubulin III in both differentiation conditions. CONCLUSIONS: The present study reported a cascade of immunophenotypic and molecular markers to characterize neurogenic differentiation of DPSCs under serum-free condition. These findings trigger the future analyses for clinical applicability of DP-derived cells in regenerative applications.

4.
PLoS One ; 9(9): e108562, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25247297

RESUMO

Ulcerative colitis (UC) is a major clinical form of inflammatory bowel disease. UC is characterized by mucosal inflammation limited to the colon, always involving the rectum and a variable extent of the more proximal colon in a continuous manner. Genetic variations in DNA repair genes may influence the extent of repair functions, DNA damage, and thus the manifestations of UC. This study thus evaluated the role of polymorphisms of the genes involved in DNA repair mechanisms. A total of 171 patients and 213 controls were included. Genotyping was carried out by ARMS PCR and PCR-RFLP analyses for RAD51, XRCC3 and hMSH2 gene polymorphisms. Allelic and genotypic frequencies were computed in both control & patient groups and data was analyzed using appropriate statistical tests. The frequency of 'A' allele of hMSH2 in the UC group caused statistically significant increased risk for UC compared to controls (OR 1.64, 95% CI 1.16-2.31, p = 0.004). Similarly, the CT genotype of XRCC3 gene was predominant in the UC group and increased the risk for UC by 1.75 fold compared to controls (OR 1.75, 95% CI 1.15-2.67, p = 0.03), further confirming the risk of 'T' allele in UC. The GC genotype frequency of RAD51 gene was significantly increased (p = 0.02) in the UC group (50.3%) compared to controls (38%). The GC genotype significantly increased the risk for UC compared to GG genotype by 1.73 fold (OR 1.73, 95% CI 1.14-2.62, p = 0.02) confirming the strong association of 'C' allele with UC. Among the controls, the SNP loci combination of hMSH2:XRCC3 were in perfect linkage. The GTC and ACC haplotypes were found to be predominant in UC than controls with a 2.28 and 2.93 fold significant increase risk of UC.


Assuntos
Colite Ulcerativa/genética , Reparo do DNA/genética , Alelos , Proteínas de Ligação a DNA/genética , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Haplótipos/genética , Humanos , Desequilíbrio de Ligação , Masculino , Proteína 2 Homóloga a MutS/genética , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , Rad51 Recombinase/genética
5.
J Adv Res ; 5(3): 277-94, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25685495

RESUMO

Since last few years, an impressive amount of data has been generated regarding the basic in vitro and in vivo biology of neural stem cells (NSCs) and there is much far hope for the success in cell replacement therapies for several human neurodegenerative diseases and stroke. The discovery of adult neurogenesis (the endogenous production of new neurons) in the mammalian brain more than 40 years ago has resulted in a wealth of knowledge about stem cells biology in neuroscience research. Various studies have done in search of a suitable source for NSCs which could be used in animal models to understand the basic and transplantation biology before treating to human. The difficulties in isolating pure population of NSCs limit the study of neural stem behavior and factors that regulate them. Several studies on human fetal brain and spinal cord derived NSCs in animal models have shown some interesting results for cell replacement therapies in many neurodegenerative diseases and stroke models. Also the methods and conditions used for in vitro culture of these cells provide an important base for their applicability and specificity in a definite target of the disease. Various important developments and modifications have been made in stem cells research which is needed to be more specified and enrolment in clinical studies using advanced approaches. This review explains about the current perspectives and suitable sources for NSCs isolation, characterization, in vitro proliferation and their use in cell replacement therapies for the treatment of various neurodegenerative diseases and strokes.

6.
Stem Cells Cloning ; 5: 15-27, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24198535

RESUMO

Stem cell transplantation for spinal cord injury (SCI) along with new pharmacotherapy research offers the potential to restore function and ease the associated social and economic burden in the years ahead. Various sources of stem cells have been used in the treatment of SCI, but the most convincing results have been obtained with neural progenitor cells in preclinical models. Although the use of cell-based transplantation strategies for the repair of chronic SCI remains the long sought after holy grail, these approaches have been to date the most successful when applied in the subacute phase of injury. Application of cell-based strategies for the repair and regeneration of the chronically injured spinal cord will require a combinational strategy that may need to include approaches to overcome the effects of the glial scar, inhibitory molecules, and use of tissue engineering strategies to bridge the lesion. Nonetheless, cell transplantation strategies are promising, and it is anticipated that the Phase I clinical trials of some form of neural stem cell-based approach in SCI will commence very soon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA