Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Heliyon ; 6(10): e05149, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33072916

RESUMO

Our previous reports showed that 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) has antiproliferative actions in endothelial cells stably expressing viral G protein-coupled receptor (vGPCR) associated with the pathogenesis of Kaposi's sarcoma. It has been reported that COX-2 enzyme, involved in the tumorigenesis of many types of cancers, is induced by vGPCR. Therefore, we investigated whether COX-2 down-regulation is part of the growth inhibitory effects of 1α,25(OH)2D3. Proliferation was measured in presence of COX-2 inhibitor Celecoxib (10-20 µM) revealing a decreased in vGPCR cell number, displaying typically apoptotic features in a dose dependent manner similarly to 1α,25(OH)2D3. In addition, the reduced cell viability observed with 20 µM Celecoxib was enhanced in presence of 1α,25(OH)2D3. Remarkably, although COX-2 mRNA and protein levels were up-regulated after 1α,25(OH)2D3 treatment, COX-2 enzymatic activity was reduced in a VDR-dependent manner. Furthermore, an interaction between COX-2 and VDR was revealed through GST pull-down and computational analysis. Additionally, high-affinity prostanoid receptors (EP3 and EP4) were found down-regulated by 1α,25(OH)2D3. Altogether, these results suggest a down-regulation of COX-2 activity and of prostanoid receptors as part of the antineoplastic mechanism of 1α,25(OH)2D3 in endothelial cells transformed by vGPCR.

2.
Phys Chem Chem Phys ; 21(40): 22539-22552, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31588935

RESUMO

The proteolytic resistant 33-mer gliadin peptide is an immunodominant fragment in gluten and responsible for the celiac disease and other gluten-related disorders. Meanwhile, the primary structure of the 33-mer is associated with the adaptive immune response in celiac patients, and the structural transformation of the 33-mer into protofilaments activates a primordial innate immune response in human macrophages. This means that accumulation, oligomerisation and structural transformation of the 33-mer could be the unknown first event that triggers the disease. Herein, we reveal the early stepwise mechanism of 33-mer oligomerisation by combining multiple computational simulations, tyrosine cross-linking, fluorescence spectroscopy and circular dichroism experiments. Our theoretical findings demonstrated that the partial charge distribution along the 33-mer molecule and the presence of glutamine that favours H-bonds between the oligomers are the driving forces that trigger oligomerisation. The high content of proline is critical for the formation of the flexible PPII secondary structure that led to a ß structure transition upon oligomerisation. Experimentally, we stabilised the 33-mer small oligomers by dityrosine cross-linking, detecting from dimers to higher molecular weight oligomers, which confirmed our simulations. The relevance of 33-mer oligomers as a trigger of the disease as well as its inhibition may be a novel therapeutic strategy for the treatment of gluten-related disorders.

3.
J Biomol Struct Dyn ; 37(6): 1597-1615, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29633901

RESUMO

γ-aminobutyric acid-type A (GABAA) receptors mediate fast synaptic inhibition in the central nervous system of mammals. They are modulated via several sites by numerous compounds, which include GABA, benzodiazepines, ethanol, neurosteroids and anaesthetics among others. Due to their potential as targets of novel drugs, a detailed knowledge of their structure-function relationships is needed. Here, we present the model of the α1ß2γ2 subtype GABAA receptor in the APO state and in complex with selected ligands, including agonists, antagonists and allosteric modulators. The model is based on the crystallographic structure of the human ß3 homopentamer GABAA receptor. The complexes were refined using atomistic molecular dynamics simulations. This allowed a broad description of the binding modes and the detection of important interactions in agreement with experimental information. From the best of our knowledge, this is the only model of the α1ß2γ2 GABAA receptor that represents altogether the desensitized state of the channel and comprehensively describes the interactions of ligands of the orthosteric and benzodiazepines binding sites in agreement with the available experimental data. Furthermore, it is able to explain small differences regarding the binding of a variety of chemically divergent ligands. Finally, this new model may pave the way for the design of focused experimental studies that will allow a deeper description of the receptor.


Assuntos
Benzodiazepinas/química , Antagonistas de Receptores de GABA-A/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Receptores de GABA-A/química , Sequência de Aminoácidos , Benzodiazepinas/farmacologia , Sítios de Ligação , Descoberta de Drogas/métodos , Antagonistas de Receptores de GABA-A/farmacologia , Ligação de Hidrogênio , Ligantes , Reprodutibilidade dos Testes , Relação Estrutura-Atividade
4.
PLoS Comput Biol ; 14(4): e1006082, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29659564

RESUMO

In this work, we assess a previously advanced hypothesis that predicts the existence of ion channels in the capsid of small and non-enveloped icosahedral viruses. With this purpose we examine Triatoma Virus (TrV) as a case study. This virus has a stable capsid under highly acidic conditions but disassembles and releases the genome in alkaline environments. Our calculations range from a subtle sub-atomic proton interchange to the dismantling of a large-scale system representing several million of atoms. Our results provide structure-based explanations for the three roles played by the capsid to enable genome release. First, we observe, for the first time, the formation of a hydrophobic gate in the cavity along the five-fold axis of the wild-type virus capsid, which can be disrupted by an ion located in the pore. Second, the channel enables protons to permeate the capsid through a unidirectional Grotthuss-like mechanism, which is the most likely process through which the capsid senses pH. Finally, assuming that the proton leak promotes a charge imbalance in the interior of the capsid, we model an internal pressure that forces shell cracking using coarse-grained simulations. Although qualitatively, this last step could represent the mechanism of capsid opening that allows RNA release. All of our calculations are in agreement with current experimental data obtained using TrV and describe a cascade of events that could explain the destabilization and disassembly of similar icosahedral viruses.


Assuntos
Dicistroviridae/fisiologia , Dicistroviridae/ultraestrutura , Canais Iônicos/metabolismo , Animais , Capsídeo/fisiologia , Capsídeo/ultraestrutura , Biologia Computacional , Dicistroviridae/genética , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Modelos Biológicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Prótons , Eletricidade Estática , Montagem de Vírus/fisiologia
5.
J Biomol Struct Dyn ; 36(4): 861-877, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28298157

RESUMO

Based on the analysis of the mechanism of ligand transfer to membranes employing in vitro methods, Fatty Acid Binding Protein (FABP) family has been divided in two subgroups: collisional and diffusional FABPs. Although the collisional mechanism has been well characterized employing in vitro methods, the structural features responsible for the difference between collisional and diffusional mechanisms remain uncertain. In this work, we have identified the amino acids putatively responsible for the interaction with membranes of both, collisional and diffusional, subgroups of FABPs. Moreover, we show how specific changes in FABPs' structure could change the mechanism of interaction with membranes. We have computed protein-membrane interaction energies for members of each subgroup of the family, and performed Molecular Dynamics simulations that have shown different configurations for the initial interaction between FABPs and membranes. In order to generalize our hypothesis, we extended the electrostatic and bioinformatics analysis over FABPs of different mammalian genus. Also, our methodological approach could be used for other systems involving protein-membrane interactions.


Assuntos
Membrana Celular/química , Proteínas de Ligação a Ácido Graxo/química , Ácidos Graxos/química , Proteínas de Membrana/química , Aminoácidos/química , Biologia Computacional , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA