Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
bioRxiv ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38798355

RESUMO

Human behavior can be remarkably shaped by experience, such as the removal of sensory input. Many studies of conditions such as stroke, limb amputation, and vision loss have examined how the removal of input changes brain function. However, an important question has yet to be answered: when input is lost, does the brain change its connectivity to preferentially use some remaining inputs over others? In individuals with healthy vision, the central portion of the retina is preferentially used for everyday visual tasks, due to its ability to discriminate fine details. However, when central vision is lost in conditions like macular degeneration, peripheral vision must be relied upon for those everyday tasks, with certain portions receiving "preferential" usage over others. Using resting-state fMRI collected during total darkness, we examined how deprivation and preferential usage influence the intrinsic functional connectivity of sensory cortex by studying individuals with selective vision loss due to late stages of macular degeneration. We found that cortical regions representing spared portions of the peripheral retina, regardless of whether they are preferentially used, exhibit plasticity of intrinsic functional connectivity in macular degeneration. Cortical representations of spared peripheral retinal locations showed stronger connectivity to MT, a region involved in processing motion. These results suggest that long-term loss of central vision can produce widespread effects throughout spared representations in early visual cortex, regardless of whether those representations are preferentially used. These findings support the idea that connections to visual cortex maintain the capacity for change well after critical periods of visual development. Highlights: Portions of early visual cortex representing central vs. peripheral vision exhibit different patterns of connectivity to category-selective visual regions.When central vision is lost, cortical representations of peripheral vision display stronger functional connections to MT than central representations.When central vision is lost, connectivity to regions selective for tasks that involve central vision (FFA and PHA) are not significantly altered.These effects do not depend on which locations of peripheral vision are used more.

2.
Hum Brain Mapp ; 44(10): 4120-4135, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37195035

RESUMO

Late-stage macular degeneration (MD) often causes retinal lesions depriving an individual of central vision, forcing them to learn to use peripheral vision for daily tasks. To compensate, many patients develop a preferred retinal locus (PRL), an area of peripheral vision used more often than equivalent regions of spared vision. Thus, associated portions of cortex experience increased use, while portions of cortex associated with the lesion are deprived of sensory input. Prior research has not well examined the degree to which structural plasticity depends on the amount of use across the visual field. Cortical thickness, neurite density, and orientation dispersion were measured at portions of cortex associated with the PRL, the retinal lesion, and a control region in participants with MD as well as age-matched, gender-matched, and education-matched controls. MD participants had significantly thinner cortex in both the cortical representation of the PRL (cPRL) and the control region, compared with controls, but no significant differences in thickness, neurite density, or orientation dispersion were found between the cPRL and the control region as functions of disease or onset. This decrease in thickness is driven by a subset of early-onset participants whose patterns of thickness, neurite density, and neurite orientation dispersion are distinct from matched control participants. These results suggest that people who develop MD earlier in adulthood may undergo more structural plasticity than those who develop it late in life.


Assuntos
Degeneração Macular , Córtex Visual , Humanos , Neuritos/patologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/patologia , Percepção Visual , Campos Visuais , Retina/patologia , Degeneração Macular/patologia
3.
Invest Ophthalmol Vis Sci ; 64(1): 14, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36656567

RESUMO

Purpose: Individuals with central vision loss due to macular degeneration (MD) often spontaneously develop a preferred retinal locus (PRL) outside the area of retinal damage, which they use instead of the fovea. Those who develop a stable PRL are more successful at coping with their vision loss. However, it is unclear whether improvements in visual performance at the PRL are specific to that retinal location or are also observed in other parts of the retina. Perceptual learning literature suggests that the retinal specificity of these effects provides insight about the mechanisms involved. Better understanding of these mechanisms is necessary for the next generation of interventions and improved patient outcomes. Methods: To address this, we trained participants with healthy vision to develop a trained retinal locus (TRL), analogous to the PRL in patients. We trained 24 participants on a visual search task using a gaze-contingent display to simulate a central scotoma. Results: Results showed retinotopically specific improvements in visual crowding only at the TRL; however, visual acuity improved in both the TRL and in an untrained retinal locus. Conclusions: These results suggest that training with an artificial scotoma involves multiple mechanistic levels, some location-specific and some not, and that simulated scotoma training paradigms likely influence multiple mechanisms simultaneously. Eye movement analysis suggests that the non-retinotopic learning effects may be related to improvements in the capability to maintain a stable gaze during stimulus presentation. This work suggests that effective interventions promoting peripheral viewing may influence multiple mechanisms simultaneously.


Assuntos
Degeneração Macular , Doenças Retinianas , Humanos , Escotoma , Retina , Transtornos da Visão , Fixação Ocular
4.
J Int Neuropsychol Soc ; 29(6): 605-614, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36239453

RESUMO

OBJECTIVE: To evaluate the construct validity of the NIH Toolbox Cognitive Battery (NIH TB-CB) in the healthy oldest-old (85+ years old). METHOD: Our sample from the McKnight Brain Aging Registry consists of 179 individuals, 85 to 99 years of age, screened for memory, neurological, and psychiatric disorders. Using previous research methods on a sample of 85 + y/o adults, we conducted confirmatory factor analyses on models of NIH TB-CB and same domain standard neuropsychological measures. We hypothesized the five-factor model (Reading, Vocabulary, Memory, Working Memory, and Executive/Speed) would have the best fit, consistent with younger populations. We assessed confirmatory and discriminant validity. We also evaluated demographic and computer use predictors of NIH TB-CB composite scores. RESULTS: Findings suggest the six-factor model (Vocabulary, Reading, Memory, Working Memory, Executive, and Speed) had a better fit than alternative models. NIH TB-CB tests had good convergent and discriminant validity, though tests in the executive functioning domain had high inter-correlations with other cognitive domains. Computer use was strongly associated with higher NIH TB-CB overall and fluid cognition composite scores. CONCLUSION: The NIH TB-CB is a valid assessment for the oldest-old samples, with relatively weak validity in the domain of executive functioning. Computer use's impact on composite scores could be due to the executive demands of learning to use a tablet. Strong relationships of executive function with other cognitive domains could be due to cognitive dedifferentiation. Overall, the NIH TB-CB could be useful for testing cognition in the oldest-old and the impact of aging on cognition in older populations.


Assuntos
Cognição , Função Executiva , Adulto , Humanos , Idoso de 80 Anos ou mais , Idoso , Estados Unidos , Reprodutibilidade dos Testes , Envelhecimento , Memória de Curto Prazo , Testes Neuropsicológicos , National Institutes of Health (U.S.)
5.
Vision Res ; 203: 108158, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36527839

RESUMO

After loss of central vision following retinal pathologies such as macular degeneration (MD), patients often adopt compensatory strategies including developing a "preferred retinal locus" (PRL) to replace the fovea in tasks involving fixation. A key question is whether patients develop multi-purpose PRLs or whether their oculomotor strategies adapt to the demands of the task. While most MD patients develop a PRL, clinical evidence suggests that patients may develop multiple PRLs and switch between them according to the task at hand. To understand this, we examined a model of central vision loss in normally seeing individuals and tested whether they used the same or different PRLs across tasks after training. Nineteen participants trained for 10 sessions on contrast detection while in conditions of gaze-contingent, simulated central vision loss. Before and after training, peripheral looking strategies were evaluated during tasks measuring visual acuity, reading abilities and visual search. To quantify strategies in these disparate, naturalistic tasks, we measured and compared the amount of task-relevant information at each of 8 equally spaced, peripheral locations, while participants performed the tasks. Results showed that some participants used consistent viewing strategies across tasks whereas other participants' strategies differed depending on task. This novel method allows quantification of peripheral vision use even in relatively ecological tasks. These results represent one of the first examinations of peripheral viewing strategies across tasks in simulated vision loss. Results suggest that individual differences in peripheral looking strategies following simulated central vision loss may model those developed in pathological vision loss.


Assuntos
Degeneração Macular , Escotoma , Humanos , Retina , Percepção Visual , Movimentos Oculares , Transtornos da Visão , Fixação Ocular
6.
Front Aging Neurosci ; 14: 1002096, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212035

RESUMO

The past 25 years have provided a rich discovery of at least four fundamental patterns that represent structural and functional brain aging across multiple cognitive domains. Of the many potential patterns of brain aging, few are ever examined simultaneously in a given study, leading one to question their mutual exclusivity. Moreover, more studies are emerging that note failures to replicate some brain aging patterns, thereby questioning the universality and prevalence of these patterns. Although some attempts have been made to create unifying theories incorporating many of these age-related brain patterns, we propose that the field's understanding of the aging brain has been hindered due to a large number of influential models with little crosstalk between them. We briefly review these brain patterns, the influential domain-general theories of neurocognitive aging that attempt to explain them, and provide examples of recent challenges to these theories. Lastly, we elaborate on improvements that can be made to lead the field to more comprehensive and robust models of neurocognitive aging.

7.
Vision Res ; 201: 108126, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36162313

RESUMO

People with bilateral central vision loss sometimes develop a new point of oculomotor reference called a preferred retinal locus (PRL) that is used for fixating and planning saccadic eye movements. How individuals develop and learn to effectively use a PRL is still debated; in particular, the time course of learning to plan saccades using a PRL and learning to stabilize peripheral fixation at the desired location. Here we address knowledge limitations through research describing how eye movements change as a person learns to adopt an eccentric retinal locus. Using a gaze-contingent, eye tracking-guided paradigm to simulate central vision loss, 40 participants developed a PRL by engaging in an oculomotor and visual recognition task. After 12 training sessions, significant improvements were observed in six eye movement metrics addressing different aspects involved in learning to use a PRL: first saccade landing dispersion, saccadic re-referencing, saccadic precision, saccadic latency, percentage of useful trials, and fixation stability. Importantly, our analyses allowed separate examination of the stability of target fixation separately from the dispersion and precision of the landing location of saccades. These measures explained 50% of the across-subject variance in accuracy. Fixation stability and saccadic precision showed a strong, positive correlation. Although there was no statistically significant difference in rate of learning, individuals did tend to learn saccadic precision faster than fixation stability. Saccadic precision was also more associated with accuracy than fixation stability for the behavioral task. This suggests effective intervention strategies in low vision should address both fixation stability and saccadic precision.


Assuntos
Movimentos Oculares , Fixação Ocular , Humanos , Movimentos Sacádicos , Escotoma , Aprendizagem
8.
Neuroimage ; 245: 118737, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34798232

RESUMO

The visual cortex has been a heavily studied region in neuroscience due to many factors, not the least of which is its well-defined retinotopic organization. This organization makes it possible to predict the general location of cortical regions that stimuli will activate during visual tasks. However, the precise and accurate mapping of these regions in human patients takes time, effort, and participant compliance that can be difficult in many patient populations. In humans, this retino-cortical mapping has typically been done using functional localizers which maximally activate the area of interest, and then the activation profile is thresholded and converted to a binary mask region of interest (ROI). An alternative method involves performing population receptive field (pRF) mapping of the whole visual field and choosing vertices whose pRF centers fall within the stimulus. This method ignores the spatial extent of the pRF which changes dramatically between central and peripheral vision. Both methods require a dedicated functional scan and depend on participants' stable fixation. The aim of this project was to develop a user-friendly method that can transform a retinal object of interest (for example, an image, a retinal lesion, or a preferred locus for fixation) from retinal space to its expected representation on the cortical surface without a functional scan. We modeled the retinal representation of each cortical vertex as a 2D Gaussian with a location and spatial extent given by a previously published retinotopic atlas. To identify how affected any cortical vertex would be by a given retinal object, we took the product of the retinal object with the Gaussian pRF of that cortical vertex. Normalizing this value gives the expected response of a given vertex to the retinal object. This method was validated using BOLD data obtained using a localizer with discrete visual stimuli, and showed good agreement to predicted values. Cortical localization of a visual stimulus or retinal defect can be obtained using our publicly available software, without a functional scan. Our software may benefit research with disease populations who have trouble maintaining stable fixation.


Assuntos
Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Retina/fisiologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiologia , Adolescente , Adulto , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Software
9.
Front Neurosci ; 15: 734970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803584

RESUMO

Pathologies affecting central vision, and macular degeneration (MD) in particular, represent a growing health concern worldwide, and the leading cause of blindness in the Western World. To cope with the loss of central vision, MD patients often develop compensatory strategies, such as the adoption of a Preferred Retinal Locus (PRL), which they use as a substitute fovea. However, visual acuity and fixation stability in the visual periphery are poorer, leaving many MD patients struggling with tasks such as reading and recognizing faces. Current non-invasive rehabilitative interventions are usually of two types: oculomotor, aiming at training eye movements or teaching patients to use or develop a PRL, or perceptual, with the goal of improving visual abilities in the PRL. These training protocols are usually tested over a series of outcome assessments mainly measuring low-level visual abilities (visual acuity, contrast sensitivity) and reading. However, extant approaches lead to mixed success, and in general have exhibited large individual differences. Recent breakthroughs in vision science have shown that loss of central vision affects not only low-level visual abilities and oculomotor mechanisms, but also higher-level attentional and cognitive processes. We suggest that effective interventions for rehabilitation after central vision loss should then not only integrate low-level vision and oculomotor training, but also take into account higher level attentional and cognitive mechanisms.

10.
Neuroimage ; 238: 118246, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34111516

RESUMO

The functionality of central vision is different from peripheral vision. Central vision is used for fixation and has higher acuity, making it useful for everyday activities such as reading and object identification. The central and peripheral representations in primary visual cortex (V1) also differ in how higher-order processing areas modulate their responses. For example, attention and expectation are top-down processes (i.e., high-order cognitive functions) that influence visual information processing during behavioral tasks. This top-down control is different for central vs. peripheral vision. Since functional networks can influence visual information processing in different ways, networks (such as the Fronto-Parietal (FPN), Default Mode (DMN), and Cingulo-Opercular (CON)) likely differ in how they connect to representations of the visual field across V1. Prior work indicated the central representing portion of V1 was more functionally connected to regions belonging to the FPN, and the far-peripheral representing portion of V1 was more functionally connected to regions belonging to the DMN. Our goals were (1) Assess the reproducibility and generalizability of retinotopic effects on functional connections between V1 and functional networks. (2) Extend this work to understand structural connections of central vs. peripheral representations in V1. (3) Examine the overlapping eccentricity differences in functional and structural connections of V1. (4) Examine the major white matter tracks connecting central V1 to frontal regions. We used resting-state BOLD fMRI and DWI to examine whether portions of V1 that represent different visual eccentricities differ in their functional and structural connectivity to functional networks. All data were acquired and minimally preprocessed by the Human Connectome Project. We identified central and far-peripheral representing regions from a retinotopic template. Functional connectivity was measured by correlated activity between V1 and functional networks, and structural connectivity was measured by probabilistic tractography and converted to track probability. In both modalities, differences between V1 eccentricity segment connections were compared by paired, two-tailed t-test. A spatial permutation approach was used to determine the statistical significance of the spatial overlap between modalities. The identified spatial overlap was then used in a deterministic tractography approach to identify the white matter pathways connecting the overlap to central V1. We found (1) Centrally representing portions of V1 are more strongly functionally connected to frontal regions than are peripherally representing portions of V1, (2) Structural connections also show stronger connections between central V1 and frontal regions, (3) Patterns of structural and functional connections overlaps in the lateral frontal cortex, (4) This lateral frontal overlap is connected to central V1 via the IFOF. In summary, the work's main contribution is a greater understanding of higher-order functional networks' connectivity to V1. There are stronger structural connections to central representations in V1, particularly for lateral frontal regions, implying that the functional relationship between central V1 and frontal regions is built upon direct, long-distance connections via the IFOF. Overlapping structural and functional connections reflect differences in V1 eccentricities, with central V1 preferentially connected to attention-associated regions. Understanding how V1 is functionally and structurally connected to higher-order brain areas contributes to our understanding of how the human brain processes visual information and forms a baseline for understanding any modifications in processing that might occur with training or experience.


Assuntos
Atenção/fisiologia , Conectoma , Lobo Frontal/diagnóstico por imagem , Córtex Visual/diagnóstico por imagem , Vias Visuais/diagnóstico por imagem , Adulto , Imagem de Difusão por Ressonância Magnética , Feminino , Lobo Frontal/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Percepção Visual/fisiologia , Adulto Jovem
11.
J Vis ; 20(13): 5, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33284309

RESUMO

Loss of central vision can be compensated for in part by increased use of peripheral vision. For example, patients with macular degeneration or those experiencing simulated central vision loss tend to develop eccentric viewing strategies for reading or other visual tasks. The factors driving this learning are still unclear and likely involve complex changes in oculomotor strategies that may differ among people and tasks. Although to date a number of studies have examined reliance on peripheral vision after simulated central vision loss, individual differences in developing peripheral viewing strategies and the extent to which they transfer to untrained tasks have received little attention. Here, we apply a recently published method of characterizing oculomotor strategies after central vision loss to understand the time course of changes in oculomotor strategies through training in 19 healthy individuals with a gaze-contingent display obstructing the central 10° of the visual field. After 10 days of training, we found mean improvements in saccadic re-referencing (the percentage of trials in which the first saccade placed the target outside the scotoma), latency of target acquisition (time interval between target presentation and a saccade putting the target outside the scotoma), and fixation stability. These results are consistent with participants developing compensatory oculomotor strategies as a result of training. However, we also observed substantial individual differences in the formation of eye movement strategies and the extent to which they transferred to an untrained task, likely reflecting both variations in learning rates and patterns of learning. This more complete characterization of peripheral looking strategies and how they change with training may help us understand individual differences in rehabilitation after central vision loss.


Assuntos
Movimentos Sacádicos/fisiologia , Escotoma/fisiopatologia , Campos Visuais/fisiologia , Percepção Visual/fisiologia , Feminino , Fixação Ocular/fisiologia , Humanos , Aprendizagem/fisiologia , Masculino , Leitura , Acuidade Visual/fisiologia , Adulto Jovem
12.
J Vis ; 20(9): 15, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32965480

RESUMO

Loss of central vision can be partially compensated by increased use of peripheral vision. For example, patients experiencing central vision loss due to disease (macular degeneration) or healthy participants trained with simulated central vision loss, tend to develop eccentric fixation spots for reading or other visual tasks. In both patients and in simulated conditions, there are substantial individual variations in the effective use of the periphery. The factors driving these individual differences are still unclear. Although early approaches have described some dimensions of these strategies, the field is still in its initial stages and important elements are often conflated when examining gaze patterns. Here, we propose a systematic approach to characterize oculomotor strategies in cases of central vision loss that distinguishes different components: saccadic re-referencing, saccadic precision, first saccade landing dispersion, fixation stability, latency of target acquisition, and percentage of trials that are useful. We tested this approach in healthy individuals trained with a gaze-contingent display obstructing the central 10 degrees of the visual field. The use of simulated scotoma helps overcome known challenges in clinical research, from recruitment and compliance to the diverse extent and nature of the visual loss. Importantly, this approach offers the ability to examine oculomotor strategies as they develop in controlled settings where viewing conditions are similar across participants. Results show substantial differences in characteristics of peripheral looking strategies, both across trials and individuals. This more complete characterization of peripheral looking strategies can help us understand individual differences in rehabilitation after central vision loss.


Assuntos
Adaptação Fisiológica/fisiologia , Escotoma , Campos Visuais/fisiologia , Movimentos Oculares/fisiologia , Feminino , Humanos , Movimentos Sacádicos/fisiologia
13.
J Gerontol B Psychol Sci Soc Sci ; 74(7): 1152-1162, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29757433

RESUMO

OBJECTIVES: Useful Field of View training (UFOVt) is an adaptive computerized cognitive intervention that improves visual attention and transfers to maintained health and everyday functioning in older adults. Although its efficacy is well established, the neural mechanisms underlying this intervention are unknown. This pilot study used functional MRI (fMRI) to explore neural changes following UFOVt. METHOD: Task-driven and resting-state fMRI were used to examine changes in brain activity and connectivity in healthy older adults randomized to 10 hr of UFOVt (n = 13), 10 hr of cognitively stimulating activities (CSA; n = 11), or a no-contact control (NC; n = 10). RESULTS: UFOVt resulted in reduced task-driven activity in the majority of regions of interest (ROIs) associated with task performance, CSA resulted in reduced activity in one ROI, and there were no changes within the NC group. Relative to NC, UFOVt reduced activity in ROIs involved in effortful information processing. There were no other significant between-group task-based differences. Resting-state functional connectivity between ROIs involved in executive function and visual attention was strengthened following UFOVt compared with CSA and NC. DISCUSSION: UFOVt enhances connections needed for visual attention. Together with prior work, this study provides evidence that improvement of the brain's visual attention efficiency is one mechanism underlying UFOVt.


Assuntos
Envelhecimento/fisiologia , Atenção/fisiologia , Córtex Cerebral/fisiologia , Remediação Cognitiva , Conectoma , Função Executiva/fisiologia , Plasticidade Neuronal/fisiologia , Desempenho Psicomotor/fisiologia , Tálamo/fisiologia , Campos Visuais/fisiologia , Percepção Visual/fisiologia , Idoso , Idoso de 80 Anos ou mais , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Projetos Piloto , Tálamo/diagnóstico por imagem , Terapia Assistida por Computador , Transferência de Experiência/fisiologia , Resultado do Tratamento
14.
Neuroimage ; 184: 790-800, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30237034

RESUMO

The human brain has the ability to process identical information differently depending on the task. In order to perform a given task, the brain must select and react to the appropriate stimuli while ignoring other irrelevant stimuli. The dynamic nature of environmental stimuli and behavioral intentions requires an equally dynamic set of responses within the brain. Collectively, these responses act to set up and maintain states needed to perform a given task. However, the mechanisms that allow for setting up and maintaining a task state are not fully understood. Prior evidence suggests that one possible mechanism for maintaining a task state may be through altering 'background connectivity,' connectivity that exists independently of the trials of a task. Although previous studies have suggested that background connectivity contributes to a task state, these studies have typically not controlled for stimulus characteristics, or have focused primarily on relationships among areas involved with visual sensory processing. In the present study we examined background connectivity during tasks involving both visual and auditory stimuli. We examined the connectivity profiles of both visual and auditory sensory cortex that allow for selection of task-relevant stimuli, demonstrating the existence of a potentially universal pattern of background connectivity underlying attention to a stimulus. Participants were presented with simultaneous auditory and visual stimuli and were instructed to respond to only one, while ignoring the other. Using functional MRI, we observed task-based modulation of the background connectivity profile for both the auditory and visual cortex to certain brain regions. There was an increase in background connectivity between the task-relevant sensory cortex and control areas in the frontal cortex. This increase in synchrony when receiving the task-relevant stimulus as compared to the task irrelevant stimulus may be maintaining paths for passing information within the cortex. These task-based modulations of connectivity occur independently of stimuli and could be one way the brain sets up and maintains a task state.


Assuntos
Atenção/fisiologia , Córtex Auditivo/fisiologia , Discriminação Psicológica/fisiologia , Lobo Frontal/fisiologia , Córtex Visual/fisiologia , Estimulação Acústica , Adulto , Percepção Auditiva/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Neuroimagem , Estimulação Luminosa , Percepção Visual/fisiologia , Adulto Jovem
15.
Transl Vis Sci Technol ; 7(5): 28, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30356944

RESUMO

PURPOSE: In order to monitor visual defects associated with macular degeneration (MD), we present a new psychophysical assessment called multiline adaptive perimetry (MAP) that measures visual field integrity by simultaneously estimating regions associated with perceptual distortions (metamorphopsia) and visual sensitivity loss (scotoma). METHODS: We first ran simulations of MAP with a computerized model of a human observer to determine optimal test design characteristics. In experiment 1, predictions of the model were assessed by simulating metamorphopsia with an eye-tracking device with 20 healthy vision participants. In experiment 2, eight patients (16 eyes) with macular disease completed two MAP assessments separated by about 12 weeks, while a subset (10 eyes) also completed repeated Macular Integrity Assessment (MAIA) microperimetry and Amsler grid exams. RESULTS: Results revealed strong repeatability of MAP and high accuracy, sensitivity, and specificity (0.89, 0.81, and 0.90, respectively) in classifying patient eyes with severe visual impairment. We also found a significant relationship in terms of the spatial patterns of performance across visual field loci derived from MAP and MAIA microperimetry. However, there was a lack of correspondence between MAP and subjective Amsler grid reports in isolating perceptually distorted regions. CONCLUSIONS: These results highlight the validity and efficacy of MAP in producing quantitative maps of visual field disturbances, including simultaneous mapping of metamorphopsia and sensitivity impairment. TRANSLATIONAL RELEVANCE: Future work will be needed to assess applicability of this examination for potential early detection of MD symptoms and/or portable assessment on a home device or computer.

16.
J Clin Neurophysiol ; 34(6): 527-533, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28914659

RESUMO

PURPOSE: Reports of the relationship between the default mode network (DMN) and alpha power are conflicting. Our goal was to assess this relationship by analyzing concurrently obtained EEG/functional MRI data using hypothesis-independent methods. METHODS: We collected functional MRI and EEG data during eyes-closed rest in 20 participants aged 19 to 37 (10 females) and performed independent component analysis on the functional MRI data and a Hamming-windowed fast Fourier transform on the EEG data. We correlated functional MRI fluctuations in the DMN with alpha power. RESULTS: Of the six independent components found to have significant relationships with alpha, four contained DMN-associated regions: One independent component was positively correlated with alpha power, whereas all others were negatively correlated. Furthermore, two independent components with opposite relationships with alpha had overlapping voxels in the medial prefrontal cortex and posterior cingulate cortex, suggesting that subpopulations of neurons within these classic nodes within the DMN may have different relationships to alpha power. CONCLUSIONS: Different parts of the DMN exhibit divergent relationships to alpha power. Our results highlight the relationship between DMN activity and alpha power, indicating that networks, such as the DMN, may have subcomponents that exhibit different behaviors.


Assuntos
Ritmo alfa/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Análise de Fourier , Humanos , Imageamento por Ressonância Magnética , Masculino , Imagem Multimodal , Vias Neurais/diagnóstico por imagem , Vias Neurais/fisiopatologia , Descanso , Adulto Jovem
17.
Neuroimage ; 146: 1071-1083, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27554527

RESUMO

Psychophysical and neurobiological evidence suggests that central and peripheral vision are specialized for different functions. This specialization of function might be expected to lead to differences in the large-scale functional interactions of early cortical areas that represent central and peripheral visual space. Here, we characterize differences in whole-brain functional connectivity among sectors in primary visual cortex (V1) corresponding to central, near-peripheral, and far-peripheral vision during resting fixation. Importantly, our analyses reveal that eccentricity sectors in V1 have different functional connectivity with non-visual areas associated with large-scale brain networks. Regions associated with the fronto-parietal control network are most strongly connected with central sectors of V1, regions associated with the cingulo-opercular control network are most strongly connected with near-peripheral sectors of V1, and regions associated with the default mode and auditory networks are most strongly connected with far-peripheral sectors of V1. Additional analyses suggest that similar patterns are present during eyes-closed rest. These results suggest that different types of visual information may be prioritized by large-scale brain networks with distinct functional profiles, and provide insights into how the small-scale functional specialization within early visual regions such as V1 relates to the large-scale organization of functionally distinct whole-brain networks.


Assuntos
Encéfalo/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Adulto , Mapeamento Encefálico , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Estimulação Luminosa , Vias Visuais/fisiologia , Adulto Jovem
18.
Front Aging Neurosci ; 8: 248, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826238

RESUMO

The cerebral cortex changes throughout the lifespan, and the cortical gray matter in many brain regions becomes thinner with advancing age. Effects of aging on cortical thickness (CT) have been observed in many brain regions, including areas involved in basic perceptual functions such as processing visual inputs. An important property of early visual cortices is their topographic organization-the cortical structure of early visual areas forms a topographic map of retinal inputs. Primary visual cortex (V1) is considered to be the most basic cortical area in the visual processing hierarchy, and is topographically organized from posterior (central visual representation) to anterior (peripheral visual representation) along the calcarine sulcus. Some studies have reported strong age-dependent cortical thinning in portions of V1 that likely correspond to peripheral visual representations, while there is less evidence of substantial cortical thinning in central V1. However, the effect of aging on CT in V1 as a function of its topography has not been directly investigated. To address this gap in the literature, we estimated the CT of different eccentricity sectors in V1 using T1-weighted MRI scans acquired from groups of healthy younger and older adults, and then assessed whether between-group differences in V1 CT depended on cortical eccentricity. These analyses revealed age-dependent cortical thinning specific to peripheral visual field representations in anterior portions of V1, but did not provide evidence for age-dependent cortical thinning in other portions of V1. Additional analyses found similar effects when analyses were restricted to the gyral crown, sulcul depth and sulcul wall, indicating that these effects are not likely due to differences in gyral/sulcul contributions to our regions of interest (ROI). Importantly, this finding indicates that age-dependent changes in cortical structure may differ among functionally distinct zones within larger canonical cortical areas. Likely relationships to known age-related declines in visual performance are discussed to provide direction for future research in this area.

19.
Sci Rep ; 6: 23268, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27009536

RESUMO

Better understanding of the extent and scope of visual cortex plasticity following central vision loss is essential both for clarifying the mechanisms of brain plasticity and for future development of interventions to retain or restore visual function. This study investigated structural differences in primary visual cortex between normally-sighted controls and participants with central vision loss due to macular degeneration (MD). Ten participants with MD and ten age-, gender-, and education-matched controls with normal vision were included. The thickness of primary visual cortex was assessed using T1-weighted anatomical scans, and central and peripheral cortical regions were carefully compared between well-characterized participants with MD and controls. Results suggest that, compared to controls, participants with MD had significantly thinner cortex in typically centrally-responsive primary visual cortex - the region of cortex that normally receives visual input from the damaged area of the retina. Conversely, peripherally-responsive primary visual cortex demonstrated significantly increased cortical thickness relative to controls. These results suggest that central vision loss may give rise to cortical thinning, while in the same group of people, compensatory recruitment of spared peripheral vision may give rise to cortical thickening. This work furthers our understanding of neural plasticity in the context of adult vision loss.


Assuntos
Degeneração Macular/diagnóstico por imagem , Degeneração Macular/patologia , Oftalmoscopia/métodos , Córtex Visual/diagnóstico por imagem , Córtex Visual/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Plasticidade Neuronal , Campos Visuais , Percepção Visual
20.
Neuropsychology ; 30(3): 322-31, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26460586

RESUMO

OBJECTIVE: This study examined the relationship between cortical thickness in executive control networks and neuropsychological measures of executive function. METHOD: Forty-one community-dwelling older adults completed an MRI scan and a neuropsychological battery including 5 measures of executive function. RESULTS: Factor analysis of executive function measures revealed 2 distinct factors: (a) Complex Attention Control (CAC), comprised of tasks that required immediate response to stimuli and involved subtle performance feedback; and (b) Sustained Executive Control (SEC), comprised of tasks that involved maintenance and manipulation of information over time. Neural networks of interest were the frontoparietal network (F-P) and cingulo-opercular network (C-O), which have previously been hypothesized to relate to different components of executive function, based on functional MRI studies, but not neuropsychological factors. Linear regression models revealed that greater cortical thickness in the F-P network, but not the C-O network, predicted better performance on the CAC factor, whereas greater cortical thickness in the C-O network, but not the F-P network, predicted better performance on the SEC factor. CONCLUSIONS: The relationship between cortical thickness and performance on executive function measures was characterized by a double dissociation between the thickness of cortical regions hypothesized to be involved in executive control and distinct executive processes. Results indicate that fundamentally different executive processes may be predicted by cortical thickness in distinct brain networks.


Assuntos
Córtex Cerebral/anatomia & histologia , Função Executiva/fisiologia , Lobo Frontal/anatomia & histologia , Rede Nervosa/anatomia & histologia , Lobo Parietal/anatomia & histologia , Idoso , Idoso de 80 Anos ou mais , Atenção/fisiologia , Retroalimentação Psicológica , Feminino , Giro do Cíngulo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Desempenho Psicomotor , Tempo de Reação , Testes de Associação de Palavras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA