Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2373, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490988

RESUMO

Polaritons in two-dimensional layered crystals offer an effective solution to confine, enhance and manipulate terahertz (THz) frequency electromagnetic waves at the nanoscale. Recently, strong THz field confinement has been achieved in a graphene-insulator-metal structure, exploiting THz plasmon polaritons (PPs) with strongly reduced wavelength (λp ≈ λ0/66) compared to the photon wavelength λ0. However, graphene PPs propagate isotropically, complicating the directional control of the THz field, which, on the contrary, can be achieved exploiting anisotropic layered crystals, such as orthorhombic black-phosphorus. Here, we detect PPs, at THz frequencies, in hBN-encapsulated black phosphorus field effect transistors through THz near-field photocurrent nanoscopy. The real-space mapping of the thermoelectrical near-field photocurrents reveals deeply sub-wavelength THz PPs (λp ≈ λ0/76), with dispersion tunable by electrostatic control of the carrier density. The in-plane anisotropy of the dielectric response results into anisotropic polariton propagation along the armchair and zigzag crystallographic axes of black-phosphorus. The achieved directional subwavelength light confinement makes this material system a versatile platform for sensing and quantum technology based on nonlinear optics.

2.
Small ; 20(22): e2308116, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38152928

RESUMO

Excitation of Dirac plasmon polaritons (DPPs) in bi-dimensional materials have attracted considerable interest in recent years, both from perspectives of understanding their physics and exploring their transformative potential for nanophotonic devices, including ultra-sensitive plasmonic sensors, ultrafast saturable absorbers, modulators, and switches. Topological insulators (TIs) represent an ideal technological platform in this respect because they can support plasmon polaritons formed by Dirac carriers in the topological surface states. Tracing propagation of DPPs is a very challenging task, particularly at terahertz (THz) frequencies, where the DPP wavelength becomes over one order of magnitude shorter than the free space photon wavelength. Furthermore, severe attenuation hinders the comprehensive analysis of their characteristics. Here, the properties of DPPs in real TI-based devices are revealed. Bi2Se3 rectangular antennas can efficiently confine the propagation of DPPs to a single dimension and, as a result, enhance the DPPs visibility despite the strong intrinsic attenuation. The plasmon dispersion and loss properties from plasmon profiles are experimentally determined, along the antennas, obtained using holographic near-field nano-imaging in a wide range of THz frequencies, from 2.05 to 4.3 THz. The detailed investigation of the unveiled DPP properties can guide the design of novel topological quantum devices exploiting their directional propagation.

3.
ACS Nano ; 17(6): 6103-6112, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36883532

RESUMO

The on-chip integration of two-dimensional nanomaterials, having exceptional optical, electrical, and thermal properties, with terahertz (THz) quantum cascade lasers (QCLs) has recently led to wide spectral tuning, nonlinear high-harmonic generation, and pulse generation. Here, we transfer a large area (1 × 1 cm2) multilayer graphene (MLG), to lithographically define a microthermometer, on the bottom contact of a single-plasmon THz QCL to monitor, in real-time, its local lattice temperature during operation. We exploit the temperature dependence of the MLG electrical resistance to measure the local heating of the QCL chip. The results are further validated through microprobe photoluminescence experiments, performed on the front-facet of the electrically driven QCL. We extract a heterostructure cross-plane conductivity of k⊥= 10.2 W/m·K, in agreement with previous theoretical and experimental reports. Our integrated system endows THz QCLs with a fast (∼30 ms) temperature sensor, providing a tool to reach full electrical and thermal control on laser operation. This can be exploited, inter alia, to stabilize the emission of THz frequency combs, with potential impact on quantum technologies and high-precision spectroscopy.

4.
Adv Sci (Weinh) ; 9(28): e2200410, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35711084

RESUMO

Chip-scale, electrically-pumped terahertz (THz) frequency-combs (FCs) rely on nonlinear four-wave-mixing processes, and have a nontrivial phase relationship between the evenly spaced set of emitted modes. Simultaneous monitoring and manipulation of the intermode phase coherence, without any external seeding or active modulation, is a very demanding task for which there has hitherto been no technological solution. Here, a self-mixing intermode-beatnote spectroscopy system is demonstrated, based on THz quantum cascade laser FCs, in which light is back-scattered from the tip of a scanning near-field optical-microscope (SNOM) and the intracavity reinjection monitored. This enables to exploit the sensitivity of FC phase-coherence to optical feedback and, for the first time, manipulate the amplitude, linewidth and frequency of the intermode THz FC beatnote using the feedback itself. Stable phase-locked regimes are used to construct a FC-based hyperspectral, THz s-SNOM nanoscope. This nanoscope provides 160 nm spatial resolution, coherent detection of multiple phase-locked modes, and mapping of the THz optical response of nanoscale materials up to 3.5 THz, with noise-equivalent-power (NEP) ≈400 pW √Hz-1 . This technique can be applied to the entire infrared range, opening up a new approach to hyper-spectral near-field imaging with wide-scale applications in the study of plasmonics and quantum science, inter alia.

6.
Nanomaterials (Basel) ; 11(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34947727

RESUMO

Engineering detection dynamics in nanoscale receivers that operate in the far infrared (frequencies in the range 0.1-10 THz) is a challenging task that, however, can open intriguing perspectives for targeted applications in quantum science, biomedicine, space science, tomography, security, process and quality control. Here, we exploited InAs nanowires (NWs) to engineer antenna-coupled THz photodetectors that operated as efficient bolometers or photo thermoelectric receivers at room temperature. We controlled the core detection mechanism by design, through the different architectures of an on-chip resonant antenna, or dynamically, by varying the NW carrier density through electrostatic gating. Noise equivalent powers as low as 670 pWHz-1/2 with 1 µs response time at 2.8 THz were reached.

7.
Nat Commun ; 12(1): 6672, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795216

RESUMO

Near-field microscopy discloses a peculiar potential to explore novel quantum state of matter at the nanoscale, providing an intriguing playground to investigate, locally, carrier dynamics or propagation of photoexcited modes as plasmons, phonons, plasmon-polaritons or phonon-polaritons. Here, we exploit a combination of hyperspectral time domain spectroscopy nano-imaging and detectorless scattering near-field optical microscopy, at multiple terahertz frequencies, to explore the rich physics of layered topological insulators as Bi2Se3 and Bi2Te2.2Se0.8, hyperbolic materials with topologically protected surface states. By mapping the near-field scattering signal from a set of thin flakes of Bi2Se3 and Bi2Te2.2Se0.8 of various thicknesses, we shed light on the nature of the collective modes dominating their optical response in the 2-3 THz range. We capture snapshots of the activation of transverse and longitudinal optical phonons and reveal the propagation of sub-diffractional hyperbolic phonon-polariton modes influenced by the Dirac plasmons arising from the topological surface states and of bulk plasmons, prospecting new research directions in plasmonics, tailored nanophotonics, spintronics and quantum technologies.

8.
ACS Nano ; 15(11): 17966-17976, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34706194

RESUMO

The scalable synthesis and transfer of large-area graphene underpins the development of nanoscale photonic devices ideal for new applications in a variety of fields, ranging from biotechnology, to wearable sensors for healthcare and motion detection, to quantum transport, communications, and metrology. We report room-temperature zero-bias thermoelectric photodetectors, based on single- and polycrystal graphene grown by chemical vapor deposition (CVD), tunable over the whole terahertz range (0.1-10 THz) by selecting the resonance of an on-chip patterned nanoantenna. Efficient light detection with noise equivalent powers <1 nWHz-1/2 and response time ∼5 ns at room temperature are demonstrated. This combination of specifications is orders of magnitude better than any previous CVD graphene photoreceiver operating in the sub-THz and THz range. These state-of-the-art performances and the possibility of upscaling to multipixel architectures on complementary metal-oxide-semiconductor platforms are the starting points for the realization of cost-effective THz cameras in a frequency range still not covered by commercially available microbolometer arrays.

9.
Nano Lett ; 21(20): 8587-8594, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34618458

RESUMO

Low-dimensional nanosystems are promising candidates for manipulating, controlling, and capturing photons with large sensitivities and low noise. If quantum engineered to tailor the energy of the localized electrons across the desired frequency range, they can allow devising of efficient quantum sensors across any frequency domain. Here, we exploit the rich few-electron physics to develop millimeter-wave nanodetectors employing as a sensing element an InAs/InAs0.3P0.7 quantum-dot nanowire, embedded in a single-electron transistor. Once irradiated with light, the deeply localized quantum element exhibits an extra electromotive force driven by the photothermoelectric effect, which is exploited to efficiently sense radiation at 0.6 THz with a noise equivalent power <8 pWHz-1/2 and almost zero dark current. The achieved results open intriguing perspectives for quantum key distributions, quantum communications, and quantum cryptography at terahertz frequencies.

10.
Light Sci Appl ; 9(1): 189, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33298850

RESUMO

Semiconductor nanowire field-effect transistors represent a promising platform for the development of room-temperature (RT) terahertz (THz) frequency light detectors due to the strong nonlinearity of their transfer characteristics and their remarkable combination of low noise-equivalent powers (<1 nW Hz-1/2) and high responsivities (>100 V/W). Nano-engineering an NW photodetector combining high sensitivity with high speed (sub-ns) in the THz regime at RT is highly desirable for many frontier applications in quantum optics and nanophotonics, but this requires a clear understanding of the origin of the photo-response. Conventional electrical and optical measurements, however, cannot unambiguously determine the dominant detection mechanism due to inherent device asymmetry that allows different processes to be simultaneously activated. Here, we innovatively capture snapshots of the photo-response of individual InAs nanowires via high spatial resolution (35 nm) THz photocurrent nanoscopy. By coupling a THz quantum cascade laser to scattering-type scanning near-field optical microscopy (s-SNOM) and monitoring both electrical and optical readouts, we simultaneously measure transport and scattering properties. The spatially resolved electric response provides unambiguous signatures of photo-thermoelectric and bolometric currents whose interplay is discussed as a function of photon density and material doping, therefore providing a route to engineer photo-responses by design.

11.
Nat Commun ; 11(1): 4290, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32855392

RESUMO

Semiconductor heterostructures have enabled a great variety of applications ranging from GHz electronics to photonic quantum devices. While nonlinearities play a central role for cutting-edge functionality, they require strong field amplitudes owing to the weak light-matter coupling of electronic resonances of naturally occurring materials. Here, we ultrastrongly couple intersubband transitions of semiconductor quantum wells to the photonic mode of a metallic cavity in order to custom-tailor the population and polarization dynamics of intersubband cavity polaritons in the saturation regime. Two-dimensional THz spectroscopy reveals strong subcycle nonlinearities including six-wave mixing and a collapse of light-matter coupling within 900 fs. This collapse bleaches the absorption, at a peak intensity one order of magnitude lower than previous all-integrated approaches and well achievable by state-of-the-art QCLs, as demonstrated by a saturation of the structure under cw-excitation. We complement our data by a quantitative theory. Our results highlight a path towards passively mode-locked QCLs based on polaritonic saturable absorbers in a monolithic single-chip design.

12.
Nano Lett ; 20(5): 3169-3177, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32301617

RESUMO

Uncooled terahertz photodetectors (PDs) showing fast (ps) response and high sensitivity (noise equivalent power (NEP) < nW/Hz1/2) over a broad (0.5-10 THz) frequency range are needed for applications in high-resolution spectroscopy (relative accuracy ∼10-11), metrology, quantum information, security, imaging, optical communications. However, present terahertz receivers cannot provide the required balance between sensitivity, speed, operation temperature, and frequency range. Here, we demonstrate uncooled terahertz PDs combining the low (∼2000 kB µm-2) electronic specific heat of high mobility (>50 000 cm2 V-1 s-1) hexagonal boron nitride-encapsulated graphene, with asymmetric field enhancement produced by a bow-tie antenna, resonating at 3 THz. This produces a strong photo-thermoelectric conversion, which simultaneously leads to a combination of high sensitivity (NEP ≤ 160 pW Hz-1/2), fast response time (≤3.3 ns), and a 4 orders of magnitude dynamic range, making our devices the fastest, broad-band, low-noise, room-temperature terahertz PD, to date.

13.
Nano Lett ; 19(5): 2765-2773, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-30882226

RESUMO

Although the detection of light at terahertz (THz) frequencies is important for a large range of applications, current detectors typically have several disadvantages in terms of sensitivity, speed, operating temperature, and spectral range. Here, we use graphene as a photoactive material to overcome all of these limitations in one device. We introduce a novel detector for terahertz radiation that exploits the photothermoelectric (PTE) effect, based on a design that employs a dual-gated, dipolar antenna with a gap of ∼100 nm. This narrow-gap antenna simultaneously creates a pn junction in a graphene channel located above the antenna and strongly concentrates the incoming radiation at this pn junction, where the photoresponse is created. We demonstrate that this novel detector has an excellent sensitivity, with a noise-equivalent power of 80 pW/[Formula: see text] at room temperature, a response time below 30 ns (setup-limited), a high dynamic range (linear power dependence over more than 3 orders of magnitude) and broadband operation (measured range 1.8-4.2 THz, antenna-limited), which fulfills a combination that is currently missing in the state-of-the-art detectors. Importantly, on the basis of the agreement we obtained between experiment, analytical model, and numerical simulations, we have reached a solid understanding of how the PTE effect gives rise to a THz-induced photoresponse, which is very valuable for further detector optimization.

14.
Nanoscale ; 11(4): 1995-2002, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30644954

RESUMO

Chemical doping of bulk black phosphorus is a well-recognized way to reduce surface oxidation and degradation. Here, we report on the fabrication of terahertz frequency detectors consisting of an antenna-coupled field-effect transistor (FET) with an active channel of Se-doped black phosphorus. Our devices show a maximum room-temperature hole mobility of 1780 cm2 V-1 s-1 in a SiO2-encapsulated FET. A room-temperature responsivity of 3 V W-1 was observed, with a noise-equivalent power of 7 nW Hz-1/2 at 3.4 THz, comparable with the state-of-the-art room-temperature photodetectors operating in the same frequency range. The inclusion of Se dopants in the growth process of black phosphorus crystals enables the optimization of the transport and optical performances of FETs in the far-infrared with a high potential for the development of BP-based electro-optical devices. We also demonstrate that the flake thickness can be tuned according to the target application. Specifically, thicker flakes (>80 nm) are suitable for applications in which high mobility and high speed are essential, thinner flakes (<10 nm) are more appropriate for applications requiring high on/off current ratios, while THz photodetection is optimal with flakes 30-40 nm thick, due to the larger carrier density tunability.

15.
Opt Express ; 26(14): 18423-18435, 2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-30114022

RESUMO

At terahertz (THz) frequencies, scattering-type scanning near-field optical microscopy (s-SNOM) based on continuous wave sources mostly relies on cryogenic and bulky detectors, which represents a major constraint for its practical application. Here, we devise a THz s-SNOM system that provides both amplitude and phase contrast and achieves nanoscale (60-70nm) in-plane spatial resolution. It features a quantum cascade laser that simultaneously emits THz frequency light and senses the backscattered optical field through a voltage modulation induced inherently through the self-mixing technique. We demonstrate its performance by probing a phonon-polariton-resonant CsBr crystal and doped black phosphorus flakes.

16.
Nanoscale ; 10(19): 8938-8946, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29741546

RESUMO

Herein, we explore the main features and the prospect of plasmonics with two-dimensional semiconductors. Plasmonic modes in each class of van der Waals semiconductors have their own peculiarities, along with potential technological capabilities. Plasmons of transition-metal dichalcogenides share features typical of graphene, due to their honeycomb structure, but with damping processes dominated by intraband rather than interband transitions, unlike graphene. Spin-orbit coupling strongly affects the plasmonic spectrum of buckled honeycomb lattices (silicene and germanene), while the anisotropic lattice of phosphorene determines different propagation of plasmons along the armchair and zigzag directions. Black phosphorus is also a suitable material for ultrafast plasmonics, for which the active plasmonic response can be initiated by photoexcitation with femtosecond pulses. We also review existing applications of plasmonics with two-dimensional materials in the fields of thermoplasmonics, biosensing, and plasma-wave Terahertz detection. Finally, we consider the capabilities of van der Waals heterostructures for innovative low-loss plasmonic devices.

17.
Nat Commun ; 8: 15763, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28643788

RESUMO

Saturable absorbers (SA) operating at terahertz (THz) frequencies can open new frontiers in the development of passively mode-locked THz micro-sources. Here we report the fabrication of THz SAs by transfer coating and inkjet printing single and few-layer graphene films prepared by liquid phase exfoliation of graphite. Open-aperture z-scan measurements with a 3.5 THz quantum cascade laser show a transparency modulation ∼80%, almost one order of magnitude larger than that reported to date at THz frequencies. Fourier-transform infrared spectroscopy provides evidence of intraband-controlled absorption bleaching. These results pave the way to the integration of graphene-based SA with electrically pumped THz semiconductor micro-sources, with prospects for applications where excitation of specific transitions on short time scales is essential, such as time-of-flight tomography, coherent manipulation of quantum systems, time-resolved spectroscopy of gases, complex molecules and cold samples and ultra-high speed communications, providing unprecedented compactness and resolution.

18.
Sci Rep ; 7: 44240, 2017 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-28287123

RESUMO

Near-field imaging with terahertz (THz) waves is emerging as a powerful technique for fundamental research in photonics and across physical and life sciences. Spatial resolution beyond the diffraction limit can be achieved by collecting THz waves from an object through a small aperture placed in the near-field. However, light transmission through a sub-wavelength size aperture is fundamentally limited by the wave nature of light. Here, we conceive a novel architecture that exploits inherently strong evanescent THz field arising within the aperture to mitigate the problem of vanishing transmission. The sub-wavelength aperture is originally coupled to asymmetric electrodes, which activate the thermo-electric THz detection mechanism in a transistor channel made of flakes of black-phosphorus or InAs nanowires. The proposed novel THz near-field probes enable room-temperature sub-wavelength resolution coherent imaging with a 3.4 THz quantum cascade laser, paving the way to compact and versatile THz imaging systems and promising to bridge the gap in spatial resolution from the nanoscale to the diffraction limit.

19.
Nat Nanotechnol ; 12(3): 207-211, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27941900

RESUMO

The possibility of hybridizing collective electronic motion with mid-infrared light to form surface polaritons has made van der Waals layered materials a versatile platform for extreme light confinement and tailored nanophotonics. Graphene and its heterostructures have attracted particular attention because the absence of an energy gap allows plasmon polaritons to be tuned continuously. Here, we introduce black phosphorus as a promising new material in surface polaritonics that features key advantages for ultrafast switching. Unlike graphene, black phosphorus is a van der Waals bonded semiconductor, which enables high-contrast interband excitation of electron-hole pairs by ultrashort near-infrared pulses. Here, we design a SiO2/black phosphorus/SiO2 heterostructure in which the surface phonon modes of the SiO2 layers hybridize with surface plasmon modes in black phosphorus that can be activated by photo-induced interband excitation. Within the Reststrahlen band of SiO2, the hybrid interface polariton assumes surface-phonon-like properties, with a well-defined frequency and momentum and excellent coherence. During the lifetime of the photogenerated electron-hole plasma, coherent hybrid polariton waves can be launched by a broadband mid-infrared pulse coupled to the tip of a scattering-type scanning near-field optical microscopy set-up. The scattered radiation allows us to trace the new hybrid mode in time, energy and space. We find that the surface mode can be activated within ∼50 fs and disappears within 5 ps, as the electron-hole pairs in black phosphorus recombine. The excellent switching contrast and switching speed, the coherence properties and the constant wavelength of this transient mode make it a promising candidate for ultrafast nanophotonic devices.

20.
Adv Mater ; 28(34): 7390-6, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27315585

RESUMO

By reassembling thin isolated atomic planes of hexagonal borum nitride (hBN) with a few layer phosphorene black phosphorus (BP), hBN/BP/hBN heterostructures are mechanically stacked to devise high-efficiency THz photodetectors operating in the 0.3-0.65 THz range, from 4 K to 300 K, with a record signal-to-noise ratio of 20 000.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA