Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 9(28): e2200410, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35711084

RESUMO

Chip-scale, electrically-pumped terahertz (THz) frequency-combs (FCs) rely on nonlinear four-wave-mixing processes, and have a nontrivial phase relationship between the evenly spaced set of emitted modes. Simultaneous monitoring and manipulation of the intermode phase coherence, without any external seeding or active modulation, is a very demanding task for which there has hitherto been no technological solution. Here, a self-mixing intermode-beatnote spectroscopy system is demonstrated, based on THz quantum cascade laser FCs, in which light is back-scattered from the tip of a scanning near-field optical-microscope (SNOM) and the intracavity reinjection monitored. This enables to exploit the sensitivity of FC phase-coherence to optical feedback and, for the first time, manipulate the amplitude, linewidth and frequency of the intermode THz FC beatnote using the feedback itself. Stable phase-locked regimes are used to construct a FC-based hyperspectral, THz s-SNOM nanoscope. This nanoscope provides 160 nm spatial resolution, coherent detection of multiple phase-locked modes, and mapping of the THz optical response of nanoscale materials up to 3.5 THz, with noise-equivalent-power (NEP) ≈400 pW √Hz-1 . This technique can be applied to the entire infrared range, opening up a new approach to hyper-spectral near-field imaging with wide-scale applications in the study of plasmonics and quantum science, inter alia.

3.
Nanomaterials (Basel) ; 11(12)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34947727

RESUMO

Engineering detection dynamics in nanoscale receivers that operate in the far infrared (frequencies in the range 0.1-10 THz) is a challenging task that, however, can open intriguing perspectives for targeted applications in quantum science, biomedicine, space science, tomography, security, process and quality control. Here, we exploited InAs nanowires (NWs) to engineer antenna-coupled THz photodetectors that operated as efficient bolometers or photo thermoelectric receivers at room temperature. We controlled the core detection mechanism by design, through the different architectures of an on-chip resonant antenna, or dynamically, by varying the NW carrier density through electrostatic gating. Noise equivalent powers as low as 670 pWHz-1/2 with 1 µs response time at 2.8 THz were reached.

4.
Nat Commun ; 12(1): 6672, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34795216

RESUMO

Near-field microscopy discloses a peculiar potential to explore novel quantum state of matter at the nanoscale, providing an intriguing playground to investigate, locally, carrier dynamics or propagation of photoexcited modes as plasmons, phonons, plasmon-polaritons or phonon-polaritons. Here, we exploit a combination of hyperspectral time domain spectroscopy nano-imaging and detectorless scattering near-field optical microscopy, at multiple terahertz frequencies, to explore the rich physics of layered topological insulators as Bi2Se3 and Bi2Te2.2Se0.8, hyperbolic materials with topologically protected surface states. By mapping the near-field scattering signal from a set of thin flakes of Bi2Se3 and Bi2Te2.2Se0.8 of various thicknesses, we shed light on the nature of the collective modes dominating their optical response in the 2-3 THz range. We capture snapshots of the activation of transverse and longitudinal optical phonons and reveal the propagation of sub-diffractional hyperbolic phonon-polariton modes influenced by the Dirac plasmons arising from the topological surface states and of bulk plasmons, prospecting new research directions in plasmonics, tailored nanophotonics, spintronics and quantum technologies.

5.
Nano Lett ; 21(20): 8587-8594, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34618458

RESUMO

Low-dimensional nanosystems are promising candidates for manipulating, controlling, and capturing photons with large sensitivities and low noise. If quantum engineered to tailor the energy of the localized electrons across the desired frequency range, they can allow devising of efficient quantum sensors across any frequency domain. Here, we exploit the rich few-electron physics to develop millimeter-wave nanodetectors employing as a sensing element an InAs/InAs0.3P0.7 quantum-dot nanowire, embedded in a single-electron transistor. Once irradiated with light, the deeply localized quantum element exhibits an extra electromotive force driven by the photothermoelectric effect, which is exploited to efficiently sense radiation at 0.6 THz with a noise equivalent power <8 pWHz-1/2 and almost zero dark current. The achieved results open intriguing perspectives for quantum key distributions, quantum communications, and quantum cryptography at terahertz frequencies.

6.
Opt Express ; 28(9): 14169-14175, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32403877

RESUMO

This feature issue presents recent progress in long-wavelength photonics, focusing on wavelengths that span the mid-infrared (3-50 µm), the long-wavelength infrared (30-60 µm), and the terahertz (60-300 µm) portions of the electromagnetic spectrum. The papers in this feature issue report recent progress in the generation, manipulation, detection, and use of light across this long-wave region of the "photonics spectrum," including novel sources and cutting edge advances in detectors, long-wavelength non-linear processes, optical metamaterials and metasurfaces, and molecular spectroscopy. The range of topics covered in this feature issue provide an excellent insight into the expanding interest in long-wavelength photonics, which could open new possibilities for basic research and applications in industries that span health, environmental, and security.

7.
Nanoscale ; 11(4): 1995-2002, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30644954

RESUMO

Chemical doping of bulk black phosphorus is a well-recognized way to reduce surface oxidation and degradation. Here, we report on the fabrication of terahertz frequency detectors consisting of an antenna-coupled field-effect transistor (FET) with an active channel of Se-doped black phosphorus. Our devices show a maximum room-temperature hole mobility of 1780 cm2 V-1 s-1 in a SiO2-encapsulated FET. A room-temperature responsivity of 3 V W-1 was observed, with a noise-equivalent power of 7 nW Hz-1/2 at 3.4 THz, comparable with the state-of-the-art room-temperature photodetectors operating in the same frequency range. The inclusion of Se dopants in the growth process of black phosphorus crystals enables the optimization of the transport and optical performances of FETs in the far-infrared with a high potential for the development of BP-based electro-optical devices. We also demonstrate that the flake thickness can be tuned according to the target application. Specifically, thicker flakes (>80 nm) are suitable for applications in which high mobility and high speed are essential, thinner flakes (<10 nm) are more appropriate for applications requiring high on/off current ratios, while THz photodetection is optimal with flakes 30-40 nm thick, due to the larger carrier density tunability.

8.
Sci Adv ; 3(9): e1603317, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28879235

RESUMO

Terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers (THz DFG-QCLs) have recently emerged as the first monolithic electrically pumped semiconductor sources capable of operating at room temperature across the 1- to 6-THz range. Despite tremendous progress in power output, which now exceeds 1 mW in pulsed and 10 µW in continuous-wave regimes at room temperature, knowledge of the major figure of merits of these devices for high-precision spectroscopy, such as spectral purity and absolute frequency tunability, is still lacking. By exploiting a metrological grade system comprising a terahertz frequency comb synthesizer, we measure, for the first time, the free-running emission linewidth (LW), the tuning characteristics, and the absolute center frequency of individual emission lines of these sources with an uncertainty of 4 × 10-10. The unveiled emission LW (400 kHz at 1-ms integration time) indicates that DFG-QCLs are well suited to operate as local oscillators and to be used for a variety of metrological, spectroscopic, communication, and imaging applications that require narrow-LW THz sources.

9.
Adv Mater ; 27(37): 5567-72, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26270791

RESUMO

The first room-temperature terahertz (THz)-frequency nanodetector exploiting a 10 nm thick flake of exfoliated crystalline black phosphorus as an active channel of a field-effect transistor, is devised. By engineering and embedding planar THz antennas for efficient light harvesting, the first technological demonstration of a phosphorus-based active THz device is described.

10.
Opt Express ; 23(4): 5167-82, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25836550

RESUMO

We review the most recent technological and application advances of quantum cascade lasers, underlining the present milestones and future directions from the Mid-infrared to the Terahertz spectral range. Challenges and developments, which are the subject of the contributions to this focus issue, are also introduced.

11.
Nat Commun ; 5: 5884, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25523102

RESUMO

Quasi-crystal structures do not present a full spatial periodicity but are nevertheless constructed starting from deterministic generation rules. When made of different dielectric materials, they often possess fascinating optical properties, which lie between those of periodic photonic crystals and those of a random arrangement of scatterers. Indeed, they can support extended band-like states with pseudogaps in the energy spectrum, but lacking translational invariance, they also intrinsically feature a pattern of 'defects', which can give rise to critically localized modes confined in space, similar to Anderson modes in random structures. If used as laser resonators, photonic quasi-crystals open up design possibilities that are simply not possible in a conventional periodic photonic crystal. In this letter, we exploit the concept of a 2D photonic quasi crystal in an electrically injected laser; specifically, we pattern the top surface of a terahertz quantum-cascade laser with a Penrose tiling of pentagonal rotational symmetry, reaching 0.1-0.2% wall-plug efficiencies and 65 mW peak output powers with characteristic surface-emitting conical beam profiles, result of the rich quasi-crystal Fourier spectrum.

12.
Opt Express ; 21(8): 10172-81, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23609722

RESUMO

We measured the lattice and subband electronic temperatures of terahertz quantum cascade devices based on the optical phonon-scattering assisted active region scheme. While the electronic temperature of the injector state (j = 4) significantly increases by ΔT = T(e)(4) - T(L) ~40 K, in analogy with the reported values in resonant phonon scheme (ΔT ~70-110 K), both the laser levels (j = 2,3) remain much colder with respect to the latter (by a factor of 3-5) and share the same electronic temperature of the ground level (j = 1). The electronic population ratio n(2)/n(1) shows that the optical phonon scattering efficiently depopulates the lower laser level (j = 2) up to an electronic temperature T(e) ~180 K.


Assuntos
Termografia/instrumentação , Termografia/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de Radiação , Radiação Terahertz
13.
Sensors (Basel) ; 13(3): 3331-40, 2013 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-23478601

RESUMO

We report on a set of high-sensitivity terahertz spectroscopy experiments making use of QCLs to detect rotational molecular transitions in the far-infrared. We demonstrate that using a compact and transportable cryogen-free setup, based on a quantum cascade laser in a closed-cycle Stirling cryostat, and pyroelectric detectors, a considerable improvement in sensitivity can be obtained by implementing a wavelength modulation spectroscopy technique. Indeed, we show that the sensitivity of methanol vapour detection can be improved by a factor ≈ 4 with respect to standard direct absorption approaches, offering perspectives for high sensitivity detection of a number of chemical compounds across the far-infrared spectral range.


Assuntos
Gases/isolamento & purificação , Espectroscopia Terahertz , Desenho de Equipamento , Humanos , Raios Infravermelhos , Lasers Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA