Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 17(7): e0270217, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35793341

RESUMO

Small populations of the endangered species are more vulnerable to extinction and hence require periodic genetic monitoring to establish and revisit the conservation strategies. The Amur leopard is critically endangered with about 100 individuals in the wild. In this study, we developed a simple and cost-effective noninvasive genetic monitoring protocol for Amur leopards. Also, we investigated the impact of fecal sample's age, storage, and collection season on microsatellite genotyping success and data quality. We identified 89 leopard scats out of the 342 fecal samples collected from Land of the Leopard between 2014-2019. Microsatellite genotyping using 12 markers optimized in 3 multiplex PCR reactions reveals presence of at least 24 leopard individuals (18 males and 6 females). There was a significant difference in the success rate of genotyping depending on the time from feces deposition to collection (p = 0.014, Fisher's exact test), with better genotyping success for samples having <2 weeks of environmental exposure. Amur leopard genetic diversity was found low (Ho- 0.33, HE- 0.35, and NA- 2.57) with no visible population substructure and recent bottleneck signature. Although a historical bottleneck footprint was observed. Mitochondrial DNA diversity was also found low with two haplotypes differing by a point mutation reported in 1,769 bp of investigated sequence covering parts of cytochrome b gene (846 bp), NADH-5 gene (611 bp) and control region (312 bp). We recommend periodic genetic monitoring of wild Amur leopards following the proposed methodology to achieve cost effectiveness and efficiency.


Assuntos
Panthera , Animais , Análise Custo-Benefício , Espécies em Perigo de Extinção , Ásia Oriental , Feminino , Variação Genética , Masculino , Panthera/genética
2.
Sci Rep ; 11(1): 14164, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238947

RESUMO

Big cats (Genus: Panthera) are among the most threatened mammal groups of the world, owing to hunting, habitat loss, and illegal transnational trade. Conservation genetic studies and effective curbs on poaching are important for the conservation of these charismatic apex predators. A limited number of microsatellite markers exists for Panthera species and researchers often cross-amplify domestic cat microsatellites to study these species. We conducted data mining of seven Panthera genome sequences to discover microsatellites for conservation genetic studies of four threatened big cat species. A total of 32 polymorphic microsatellite loci were identified in silico and tested with 152 big cats, and were found polymorphic in most of the tested species. We propose a set of 12 novel microsatellite markers for use in conservation genetics and wildlife forensic investigations of big cat species. Cumulatively, these markers have a high discriminatory power of one in a million for unrelated individuals and one in a thousand for siblings. Similar PCR conditions of these markers increase the prospects of achieving efficient multiplex PCR assays. This study is a pioneering attempt to synthesise genome wide microsatellite markers for big cats.


Assuntos
Conservação dos Recursos Naturais , Genoma , Repetições de Microssatélites/genética , Panthera/genética , Inquéritos e Questionários , Animais , Sequência de Bases , Marcadores Genéticos , Polimorfismo Genético , Probabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA